首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The Penelope family of transposable elements (TEs) is broadly distributed in most species of the virilis species group of Drosophila. This element plays a pivotal role in hybrid dysgenesis in Drosophila virilis, in which at least four additional TE families are also activated. Here we present evidence that the Penelope family of elements has recently invaded D. virilis. This evidence includes: (1) a patchy geographical distribution, (2) genomic locations mainly restricted to euchromatic chromosome arms in various geographical strains, and (3) a high level of nucleotide similarity among members of the family. Two samples from a Tashkent (Middle Asia) population of D. virilis provide further support for the invasion hypothesis. The 1968 Tashkent strain is free of Penelope sequences, but all individuals collected from a 1997 population carry at least five Penelope copies. Furthermore, a second TE, Ulysses, has amplified and spread in this population. These results provide evidence for the Penelope invasion of a D. virilis natural population and the mobilization of unrelated resident transposons following the invasion.  相似文献   

6.
7.
8.
Malik HS  Eickbush TH 《Genetics》2000,154(1):193-203
Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition.  相似文献   

9.
10.
11.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

12.
The Ty3/gypsy family of retroelements is closely related to retroviruses, and some of their members have an open reading frame resembling the retroviral gene env. Sequences homologous to the gypsy element from Drosophila melanogaster are widely distributed among Drosophila species. In this work, we report a phylogenetic study based mainly on the analysis of the 5' region of the env gene from several species of the obscura group, and also from sequences already reported of D. melanogaster, Drosophila virilis, and Drosophila hydei. Our results indicate that the gypsy elements from species of the obscura group constitute a monophyletic group which has strongly diverged from the prototypic D. melanogaster gypsy element. Phylogenetic relationships between gypsy sequences from the obscura group are consistent with those of their hosts, indicating vertical transmission. However, D. hydei and D. virilis gypsy sequences are closely related to those of the affinis subgroup, which could be indicative of horizontal transmission.  相似文献   

13.
14.
15.
Several copies of the Penelope transposable element, previously described in Drosophila virilis, have been studied in different D. virilis strains and D. melanogaster strains transformed with P-based constructs bearing a full-size Penelope copy. Most Penelope copies in both species have large terminal inverted repeats (TIRs) and deletions of various sizes at the 5′ ends of their ORFs. Junctions between TIRs and ORFs usually have microhomologies of various lengths, which allowed a hypothesis explaining the emergence of these complex structures at the molecular level to be put forward. Most Penelope copies have a 34 bp long direct repeat at the ORF ends. Full-size and truncated Penelope copies are usually surrounded by target site duplications of various lengths.  相似文献   

16.
17.
18.
19.
Unlike all other Drosophila species studied to date, species in the virilis group of Drosophila have 2 complete copies of hsp68 arranged in inverted head-to-head orientation. Evidence for this conclusion includes Southern blots for D. virilis, D. lummei, and D. montana, PCR analysis of the former 2 species, in situ hybridization in D. virilis x D. lummei hybrids, and the complete nucleotide sequence of the locus in D. lummei. This organization resembles the primitive state of hsp70 in Diptera. Moreover, the Hsp68 peptide sequence for D. virilis and D. lummei is intermediate between that of Hsp70 and Hsp68 from other Drosophila spp. Therefore, we suggest that the hsp68 locus may have arisen via duplication of the hsp70 locus (or vice versa) early in the history of the genus Drosophila, with 1 hsp68 copy subsequently lost in most other Drosophila species groups.  相似文献   

20.
We recently proposed that patterns of evolution of non-LTR retrotransposable elements can be used to study patterns of spontaneous mutation. Transposition of non-LTR retrotransposable elements commonly results in creation of 5' truncated, "dead-on-arrival" copies. These inactive copies are effectively pseudogenes and, according to the neutral theory, their molecular evolution ought to reflect rates and patterns of spontaneous mutation. Maximum parsimony can be used to separate the evolution of active lineages of a non-LTR element from the fate of the "dead-on-arrival" insertions and to directly assess the relative frequencies of different types of spontaneous mutations. We applied this approach using a non-LTR element, Helena, in the Drosophila virilis group and have demonstrated a surprisingly high incidence of large deletions and the virtual absence of insertions. Based on these results, we suggested that Drosophila in general may exhibit a high rate of spontaneous large deletions and have hypothesized that such a high rate of DNA loss may help to explain the puzzling dearth of bona fide pseudogenes in Drosophila. We also speculated that variation in the rate of spontaneous deletion may contribute to the divergence of genome size in different taxa by affecting the amount of superfluous "junk" DNA such as, for example, pseudogenes or long introns. In this paper, we extend our analysis to the D. melanogaster subgroup, which last shared a common ancestor with the D. virilis group approximately 40 MYA. In a different region of the same transposable element, Helena, we demonstrate that inactive copies accumulate deletions in species of the D. melanogaster subgroup at a rate very similar to that of the D. virilis group. These results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号