首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology   总被引:13,自引:0,他引:13  
Regulation of the activation of latent TGF-beta is essential for health as too much or too little TGF-beta activity can have serious, deleterious consequences. The processes that control conversion of the precursor to the biologically active form of TGF-beta in vivo are not well characterized. We have identified a mechanism for the activation of latent TGF-beta that involves binding of the secreted and extracellular matrix protein, thrombospondin-1 (TSP-1), to the latent precursor. Specific sequences in TSP-1 and in the precursor portion (the latency associate peptide-LAP) have been determined to be essential for activation of latent TGF-beta by TSP-1. It is thought that binding of TSP-1 to the latent complex induces a conformational rearrangement of the LAP in such a manner as to prevent the LAP from conferring latency on the mature domain of TGF-beta. A TSP-dependent mechanism of activation may be locally important during wound healing and in post-natal development of epithelial structures. The possible involvement of TSP-1 in TGF-beta activation during several disease processes is also discussed.  相似文献   

2.
3.
Thrombospondin-1 (TSP-1) has been shown to bind and activate transforming growth factor-beta1 (TGF-beta1). This observation raises the possibility that TSP-1 helps to sequester TGF-beta1 in platelet alpha granules and activates TGF-beta1 once both proteins are secreted. Herein, we evaluated the level of active and latent TGF-beta1 in the plasma and in the supernatant of thrombin-treated platelets from TSP-1 null and wild-type mice on two genetic backgrounds (C57BL/6 and 129Sv). The plasminogen activator inhibitor-1/luciferase bioassay and an immunological assay were used to determine active and latent TGF-beta1. No significant differences were observed in the levels of active and latent TGF-beta1 in the supernatant of thrombin-treated platelets from TSP-1 null and wild-type mice. Active and latent TGF-beta1 were significantly increased in the plasma and platelets of C57BL/6 mice as compared with 129Sv mice. In addition, there was an increase of plasma level of latent TGF-beta1 in TSP-1 null mice as compared with wild-type mice on the C57BL/6 background but not on the 129Sv background. No active TGF-beta1 was observed in the plasma of either TSP-1 null and wild-type mice. These data indicate that TSP-1 does not function as a chaperon for TGF-beta1 during platelet production and does not activate significant quantities of secreted TGF-beta1 despite a vast excess in the number of TSP-1 molecules as compared with TGF-beta1 molecules. Because platelet releasates from TSP-1 null mice contain active TGF-beta1, we suggest that other important mechanisms of physiological activation of TGF-beta1 probably exist in platelets.  相似文献   

4.
During cutaneous wound repair, platelets, dermal fibroblasts (DF) and endothelial cells all cooperate. We have presently investigated the regulation of endothelial cell tubulogenesis by human platelet thrombospondin-1 (TSP-1), in comparison to transforming growth factor-beta1 (TGF-beta1) and total platelet lysates (PL), in a fibrin matrix cell culture system incorporating DF. TSP-1, TGF-beta1 and PL all stimulated VEGF expression in DF dose dependently at mRNA and protein level. TSP-1- and PL-treated DF supernatants significantly stimulated capillary-like structure formation (tubulogenesis) by dermal microvascular endothelial cells (HMEC-1 and HDMEC), in part via VEGF, as confirmed with neutralizing anti-VEGF antibodies. In contrast, TGF-beta1-treated DF supernatants did not induce tubulogenesis. This apparent discrepancy could be explained by the differential expression regulation in HMEC-1 of fibrinolysis and metalloproteinase mediators by TSP-1 and TGF-beta1. TSP-1 potently reduced the expression of plasminogen activator inhibitor-1 (PAI-1) (mRNA and protein), whereas TGF-beta1 enhanced it. The crucial role of PAI-1 in tubulogenesis was confirmed via the addition of active recombinant PAI-1, which abrogated tubulogenesis. In contrast, neutralizing PAI-1 antibodies enhanced tubulogenesis. Our results suggest that platelet TSP-1 released in a wound stimulates endothelial cell tubulogenesis through an upregulation of DF VEGF expression and a downregulation of endothelial cell PAI-1 expression.  相似文献   

5.
Latent TGF-beta1 activation by platelets   总被引:7,自引:0,他引:7  
Platelets are a major source of transforming growth factor-beta1 (TGF-beta1) in the circulation as they release latent growth factor in response to activation. We report here that human platelets, when stimulated with thrombin, activated a significant proportion of the latent TGF-beta released. Latent TGF-beta activation was independent of cytokine release, since activation was delayed compared to platelet degranulation. Activation occured in releasates and did not require the continuous presence of platelets. Classical mechanisms of latent TGF-beta activation were not involved, since activation was not affected by gene deletion and/or inhibitors of the known TGF-beta activators/co-factors, thrombospondin-1 (TSP-1), mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR), plasminogen/plasmin, or several other candidate proteases. In contrast, latent TGF-beta activation was significantly inhibited by the furin inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone and L-hexaarginine. We show that platelets contain a furin-like enzyme which is released upon platelet activation. We conclude that, following activation, platelets release and activate latent TGF-beta1 via mechanisms involving the release and activity of a furin-like proprotein convertase. This novel mechanism of latent TGF-beta activation might represent an important mediator and therapeutic target of platelet TGF-beta1 functions, for example, in early wound repair, fibrosis, or arteriosclerosis.  相似文献   

6.
Thrombospondin (TSP) forms specific complexes with transforming growth factor-beta (TGF-beta) in the alpha granule releasate of platelets and these TSP-TGF-beta complexes inhibit the growth of bovine aortic endothelial cells (BAE). In these studies, we report that TSP stripped of associated TGF-beta (sTSP) retained growth inhibitory activity which was partially reversed by a neutralizing antibody specific for TGF- beta. Since BAE cells secrete latent TGF-beta, we determined whether sTSP activates the latent TGF-beta secreted by BAE cells. Cells were cultured with or without sTSP and then the conditioned medium was tested for the ability to support TGF-beta-dependent normal rat kidney (NRK) colony formation in soft agar. Medium conditioned with sTSP showed a dose- and time-dependent ability to stimulate BAE-secreted TGF- beta activity, reaching maximal activation by 1-2 h with 0.4 micrograms/ml (0.9 nM) sTSP. The sTSP-mediated stimulation of TGF-beta activity is not dependent on serum factors and is not a general property of extracellular matrix molecules. The sTSP-mediated stimulation of TGF-beta activity was blocked by a mAb specific for sTSP and by neutralizing antibodies to TGF-beta. Activation of BAE cell secreted latent TGF-beta by sTSP can occur in the absence of cells and apparently does not require interactions with cell surface molecules, since in conditioned medium removed from cells and then incubated with sTSP, activation occurs with kinetics and at levels similar to what is seen when sTSP is incubated in the presence of cells. Serine proteases such as plasmin are not involved in sTSP-mediated activation of TGF- beta. Factors that regulate the conversion of latent to active TGF-beta are keys to controlling TGF-beta activity. These data suggest that TSP is a potent physiologic regulator of TGF-beta activation.  相似文献   

7.
The conversion of latent transforming growth factor beta (LTGF-beta) to the active species, transforming growth factor beta (TGF-beta), has been characterized in heterotypic cultures of bovine aortic endothelial (BAE) cells and bovine smooth muscle cells (SMCs). The formation of TGF-beta in co-cultures of BAE cells and SMCs was documented by a specific radioreceptor competition assay, while medium from homotypic cultures of BAE cells or SMCs contained no active TGF-beta as determined by this assay. The concentration of TGF-beta in the conditioned medium of heterotypic co-cultures was estimated to be 400-1,200 pg/ml using the inhibition of BAE cell migration as an assay. Northern blotting of poly A+ RNA extracted from both homotypic and heterotypic cultures of BAE cells and SMCs revealed that BAE cells produced both TGF-beta 1 and TGF-beta 2, while SMCs produced primarily TGF-beta 1. No change in the expression of these two forms of TGF-beta was apparent after 24 h in heterotypic cultures. Time course studies on the appearance of TGF-beta indicated that most of the active TGF-beta was generated within the first 12 h after the establishment of co-cultures. The generation of TGF-beta in co-cultures stimulated the production of the protease inhibitor plasminogen activator inhibitor-1 (PAI-1). The inclusion of neutralizing antibodies to TGF-beta in the co-culture medium blocked the observed increase in PAI-1 levels. The increased expression of PAI-1 subsequent to TGF-beta formation blocked the activation of the protease required for conversion of LTGF-beta to TGF-beta as the inclusion of neutralizing antibodies to PAI-1 in the co-culture medium resulted in prolonged production of TGF-beta. This effect was lost upon removal of the PAI-1 antibodies. Thus, the activation of LTGF-beta appears to be a self-regulating system.  相似文献   

8.
In mouse embryonic fibroblasts (MEF) lacking dioxin receptor (AhR), high levels of latent transforming growth factor-beta (TGF-beta)-binding protein-1 (LTBP-1) correlated with increased TGF-beta1 activity, an observation suggesting that LTBP-1 could contribute to maintain TGF-beta1 levels. Here, using small interfering RNAs (siRNA), we have first analyzed if LTBP-1 expression affected TGF-beta1 activity in MEF cells. We have then determined how LTBP-1 levels could alter the activity of extracellular proteases known to activate TGF-beta1, and finally, whether protease inhibition could reduce TGF-beta1 activation. LTBP-1 inhibition by siRNA in AhR-/- MEF decreased the amount of active TGF-beta1 and reduced plasminogen activators (PA)/plasmin and elastase activities and thrombospondin-1 (TSP-1) expression, without significantly affecting their mRNA levels. On the contrary, LTBP-1 siRNA restored matrix metalloproteinase-2 (MMP-2) activity in AhR-/- MEF. Interestingly, whereas a TGF-beta1 neutralizing antibody mimicked many of the LTBP-1 siRNA effects on extracellular proteases, addition of recombinant TGF-beta1 protein increased proteases activity over basal levels in AhR-/- MEF. These proteases contributed to TGF-beta activation since their specific inhibitors reduced active TGF-beta levels in these cells. These results suggest that LTBP-1 contributes to TGF-beta1 activation in MEF, possibly by influencing the activities of PA/plasmin, elastase, TSP-1, and MMP-2. TGF-beta1, on the other hand, could be also involved in maintaining the activity of these extracellular proteases. Thus, LTBP-1 appears to play a role in TGF-beta1 activation through a process involving extracellular protease activities, which, in turn, could be affected by TGF-beta1 levels.  相似文献   

9.
Transforming growth factor-beta (TGF-beta) is a potent mediator of cell proliferation and extracellular matrix formation, depending on the cell type and the physiological conditions. TGF-beta is usually secreted in a "latent" complex that needs activation before it can exert its effects. Several observations correlate increased expression of TGF-beta 1 with tumorigenesis. To evaluate the physiological relevance of increased TGF-beta 1 synthesis in tumor cells we established cell clones overexpressing TGF-beta 1 and observed the resulting physiological changes in TGF-beta overproducing cells in vitro and in vivo. As a model system we used the human E1A-transformed 293 tumor cells, which are insensitive to the direct growth modulatory effects of TGF-beta. The selection of this cell line allows an assessment of physiological alterations independent of TGF-beta induced proliferative changes. The use of two TGF-beta 1 expression vectors containing either the natural or a modified TGF-beta 1 precursor cDNA permitted the establishment of separate 293 cell lines overexpressing latent or active TGF-beta. Comparison of the resulting changes in glycolytic rate, adhesiveness and integrin and plasminogen activator expression established that, in vitro, both types of clones behaved similarly, indicating that expression of latent TGF-beta induces autocrine changes in the tumor cells and thus suggesting that some level of cell-associated activation occurs. TGF-beta overexpression resulted in an increased metabolic rate due to enhanced glycolysis, a property long associated with tumor cells. This increased glycolysis was not associated with altered proliferation. Cells overexpressing TGF-beta also displayed enhanced fibronectin mRNA and plasminogen activator synthesis and increased adhesiveness in vitro. They showed enhanced survival when plated sparsely on plastic in the absence of serum, and attached more readily to laminin. In addition, synthesis of several beta 1 integrins, in particular the alpha 1/beta 1, alpha 2/beta 1, and alpha 3/beta 1, all of which recognize laminin, were enhanced. Finally, cells overexpressing active TGF-beta, but not latent TGF-beta, also showed increased tumorigenicity in nude mice. Thus, an increase in endogenous TGF-beta synthesis confers several proliferation-independent phenotypic changes which may be of significance for the survival of the tumor cell inoculum or its subsequent growth, and for tumor formation and development. In the case of cells expressing active TGF-beta, the release of active TGF-beta into the vicinity of the tumor cells may also result in a more hospitable environment for tumor growth.  相似文献   

10.
Growth of Caco-2 and many cancer cells is inhibited by 1,25(OH)(2)D(3). Whereas TGF-beta 1 inhibits normal colonic epithelial cell growth, most human colon cancer-derived cells, including Caco-2 and SW480 cells, are resistant to it. The mechanisms underlying these antiproliferative actions and resistance to TGF-beta growth inhibition are largely unknown. We observed that 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] sensitized Caco-2 and SW480 cells to TGF-beta 1 growth inhibitory effects. Versus 1,25(OH)(2)D(3) alone, the combination of 1,25(OH)(2)D(3) and TGF-beta 1 significantly reduced cell numbers. Also, the amount of active TGF-beta 1 was increased (~4-fold) by this secosteroid in conditioned media from Caco-2 cells. The 1,25(OH)(2)D(3) increased the expression of IGF-II receptors (IGF-IIR), which facilitated activation of latent TGF-beta 1, and was found to activate TGF-beta signaling in Caco-2 cells. By using neutralizing antibodies to human TGF-beta 1, we showed that this cytokine contributes to secosteroid-induced inhibition of Caco-2 cell growth. Also, 1,25(OH)(2)D(3) was found to enhance the type I TGF-beta receptor mRNA and protein abundance in Caco-2 cells. Whereas the 1,25(OH)(2)D(3)-induced sensitization of Caco-2 cells to TGF-beta 1 was IGF-IIR independent, the type I TGF-beta 1 receptor was required for this sensitization. Thus 1,25(OH)(2)D(3) treatment of Caco-2 cells results in activation of latent TGF-beta 1, facilitated by the enhanced expression of IGF-IIR by this secosteroid. Also, 1,25(OH)(2)D(3) sensitized Caco-2 cells to growth inhibitory effects of TGF-beta 1, contributing to the inhibition of Caco-2 cell growth by this secosteroid.  相似文献   

11.
One of the primary points of regulation of transforming growth factor-beta (TGF-beta) activity is control of its conversion from the latent precursor to the biologically active form. We have identified thrombospondin-1 as a major physiological regulator of latent TGF-beta activation. Activation is dependent on the interaction of a specific sequence in thrombospondin-1 (K412RFK415) with the latent TGF-beta complex. Platelet thrombospon-din-1 has TGF-beta activity and immunoreactive mature TGF-beta associated with it. We now report that the latency-associated peptide (LAP) of the latent TGF-beta complex also interacts with thrombospondin-1 as part of a biologically active complex. Thrombospondin.LAP complex formation involves the activation sequence of thrombospondin-1 (KRFK) and a sequence (LSKL) near the amino terminus of LAP that is conserved in TGF-beta1-5. The interactions of LAP with thrombospondin-1 through the LSKL and KRFK sequences are important for thrombospondin-mediated activation of latent TGF-beta since LSKL peptides can competitively inhibit latent TGF-beta activation by thrombospondin or KRFK-containing peptides. In addition, the association of LAP with thrombospondin-1 may function to prevent the re-formation of an inactive LAP.TGF-beta complex since thrombospondin-bound LAP no longer confers latency on active TGF-beta. The mechanism of TGF-beta activation by thrombospondin-1 appears to be conserved among TGF-beta isoforms as latent TGF-beta2 can also be activated by thrombospondin-1 or KRFK peptides in a manner that is sensitive to inhibition by LSKL peptides.  相似文献   

12.
Like many other cell surface receptors, transforming growth factor beta (TGF-beta) receptors are internalized upon ligand stimulation. Given that the signaling-facilitating molecules Smad anchor for receptor activation (SARA) and Hrs are mainly localized in early endosomes, it was unclear whether receptor internalization is required for Smad2 activation. Using reversible biotin labeling, we directly monitored internalization of the TGF-beta type I receptor. Our data indicate that TGF-beta type I receptor is endocytosed via a clathrin-dependent mechanism and is effectively blocked by depletion of intracellular potassium or by expression of a mutant dynamin (K44A). However, blockage of receptor endocytosis by these two means has no effect on TGF-beta-mediated Smad2 activation. Furthermore, TGF-beta-induced Smad2 activation was unaffected by inhibition of hVPS34 activity with wortmannin or inhibitory anti-hVPS34 antibodies. Finally, we demonstrated that Smad2 interacted with cell surface receptors and that a SARA binding-deficient Smad2 mutant was phosphorylated by the receptors. Thus, our findings suggest that receptor endocytosis is dispersible for TGF-beta-mediated activation of Smad2 and that this activation can be mediated by both SARA-dependent and -independent mechanisms.  相似文献   

13.
14.
We investigated possible regulatory effects of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, on cytokine release from macrophages. Immobilized TSP-1 enhanced IL-6 release from the human monocytic U937 cells stimulated with phorbol myristate acetate and LPS, whereas it inhibited IL-10 release. The 70-kDa fragment of TSP-1 containing the type 1 repeats showed the same regulatory effects. The enhanced IL-6 release by TSP-1 was inhibited by anti-CD36 antibody or antibody against the sequence of the binding site to CD36 in the type 1 repeats of TSP-1. Conversely, the decrease in IL-10 release by TSP-1 was strengthened by the blocking of the interaction between CD36 and TSP-1. Furthermore, the involvement of TGF-beta1 in the inhibition of IL-10 release by TSP-1 was indicated by the facts that (i) TSP-1 induced activation of TGF-beta1 produced by the U937 cells, (ii) exogenously added TGF-beta1 inhibited IL-10 release, and (iii) antibody against TGF-beta1 blocked the inhibition of IL-10 release by TSP-1. Together, the present findings suggest that TSP-1 enhances IL-6 release from macrophages by interaction with CD36, whereas IL-10 release is regulated by the balance between the enhancing effect of TSP-1 via CD36 and the suppressive effect by TSP-1-activated TGF-beta1.  相似文献   

15.
These experiments utilized the estrogen antagonists CI-628, nafoxidine, and tamoxifen as tools to investigate potential molecular mechanisms of estrogen activation of female rat sexual behavior. Adult female rats, ovariectomized 4–7 days previously and matched for body weight, were administered single sc injections of one of the three antiestrogens, and the ability of the antagonists to block estrogen-induced sexual behavior, to deplete and replenish hypothalamic estrogen receptors, and to inhibit the binding of estradiol by hypothalamic nuclei 2 hr, or 1, 2, 4, or 7 days later was assessed. All three compounds produced a dose- and time-dependent inhibition of estrogen-activated lordosis, with tamoxifen being the most potent inhibitor. The three antiestrogens also caused prolonged depletion of hypothalamic estrogen receptors, but there was no correlation between receptor levels and the degree of inhibition of lordosis behavior at any time point following antiestrogen treatment. Rats showed high levels of sexual receptivity when antiestrogens were injected 2, 4, or 7 days before estrogen; however, hypothalamic estrogen receptors were still markedly (up to 70%) reduced at some of these time points. In contrast, there was a large (r = 0.67), significant correlation between the ability of all three agents to reduce [3H]estradiol binding by brain cell nuclei and their ability to reduce the display of estrogen-induced female sexual behavior. Antiestrogen injections which inhibited lordosis always decreased the level of specific estradiol binding by hypothalamic nuclei. These data indicate that delayed receptor replenishment does not adequately explain the antagonism of lordosis behavior by antiestrogens. The results presented here strongly point to the cell nucleus as the critical locus of receptor-mediated interactions which underlie estrogen and antiestrogen regulation of female sexual behavior.  相似文献   

16.
17.
Thrombospondin-1 (TSP-1) and an alternatively spliced fibronectin (Fn)-EIIIA isoform are adhesive proteins associated with embryogenesis and tissue remodeling. We compared, by immunohistochemistry and in situ hybridization, the course of TSP-1 and Fn-EIIIA expression in a model of glomerulonephritis induced by Habu snake venom (HV) and characterized by mesangial cell migration, proliferation, and extracellular matrix (ECM) synthesis. At 24 hr after HV, TSP-1 and Fn-EIIIA proteins localized in the central aspects of lesions associated with platelets and macrophages and at the margins of lesions coinciding with mesangial cell migration (determined by Thy-1 staining). Mesangial cells at this time expressed TSP-1 but not Fn-EIIIA mRNA. TSP-1 protein and mRNA peaked in lesions at 48 hr and were associated with cell proliferation (determined by PCNA, alpha-smooth muscle actin phenotype, and expression of beta-PDGF receptor mRNA). TSP-1 expression declined at 72 hr when expression of ECM synthesis peaked, as determined by increased expression of collagen Type IV, laminin, and TGF-beta1 protein and mRNA. Mesangial cell expression of Fn-EIIIA was first observed at 48 hr and was most abundant at 72 hr after HV. Therefore, platelet- and macrophage-derived Fn-EIIIA and TSP-1 in early lesions are associated with mesangial cell migration. Mesangial cell upregulation of TSP-1 is associated with migration and proliferation but not maximal ECM accumulation, whereas mesangial cell expression of Fn-EIIIA is associated with proliferation and ECM accumulation. These results suggest distinctive temporal and spatial roles for TSP-1 and Fn-EIIIA in remodeling during glomerular disease. (J Histochem Cytochem 47:533-543, 1999)  相似文献   

18.
The effects of two forms of transforming growth factor-beta, TGF-beta 1 and TGF-beta 2, upon the proliferative response of murine thymocytes were investigated in this study. TGF-beta 1 and TGF-beta 2 were found to be equipotent growth inhibitors of interleukin-1 (IL-1)- and phytohemagglutinin (PHA)-stimulated thymocytes when added at the initiation of the cultures. These factors suppressed the proliferative response in a dose-dependent fashion between 0.4 and 100 pM. The proliferative response was maximally inhibited (90% inhibition) at 100 pM. The half-maximal inhibitory dose (ID50) was 6 and 4 pM for TGF-beta 1 and TGF-beta 2, respectively. These factors were less effective or ineffective at suppressing the proliferation of thymocytes which had been prestimulated for 24 to 48 hr by IL-1 and PHA. Neither factor inhibited interleukin-2 (IL-2)-dependent thymocyte proliferation or the proliferation of an IL-2-dependent cytotoxic T cell line (CTL-L), suggesting that the anti-proliferative actions of these factors was by inhibition of cellular events triggered by IL-1. Furthermore, anti-TGF-beta 1 antibodies did neutralize the biological actions of TGF-beta 1 and these antibodies did block the binding of 125I-labeled TGF-beta 1 to cell surface receptors showing that the inhibitory action is mediated through specific receptors for TGF-beta 1 on thymocytes. These antibodies, however, did not neutralize the anti-proliferative action of TGF-beta 2. Although TGF-beta 1 and TGF-beta 2 exhibit very similar biological activities, these molecules are antigenically different and, therefore, have different tertiary structures.  相似文献   

19.
20.
A sensitive immunoblotting assay was developed for the detection of transforming growth factor (TGF)-beta 1 from cell extracts and culture medium. HT-1080 human fibrosarcoma cells and human fibroblasts were used as models for the secretion and proteolytic release of pericellular matrix-associated TGF-beta 1. Analysis of the pericellular matrices of the cells indicated that the majority of cell-layer associated TGF-beta 1 was associated with the pericellular matrix. Treatment of the cells with plasmin or thrombin released the matrix-associated TGF-beta 1 to the culture medium. Assays for the biological activity of plasmin-released TGF-beta 1 by Mv1Lu cell growth inhibition assays indicated that the majority was in the latent form. Northern hybridization analyses indicated that the mRNA levels of TGF-beta 1 were not elevated during the proteinase treatment. Experiments using radiolabeled TGF-beta 1 indicated that exogenous active TGF-beta 1 associates mainly with the presumed TGF-beta 1 receptors that were not retained in the extracellular matrix preparations. These results indicate that a major fraction of latent TGF-beta 1 that is produced by the cells is deposited to and remains associated with the pericellular matrices of cultured fibroblasts and fibrosarcoma cells, and that matrix-associated TGF-beta 1 is very susceptible to release by various proteolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号