首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We examined the distribution of nonlamin nuclear matrix antigens during the mitotic cell cycle in mouse 3T3 fibroblasts. Four monoclonal antibodies produced against isolated nuclear matrices were used to characterize antigens by the immunoblotting of isolated nuclear matrix preparations, and were used to localize the antigens by indirect immunofluorescence. For comparison, lamins and histones were localized using human autoimmune antibodies. At interphase, the monoclonal antibodies recognized non-nucleolar and nonheterochromatin nuclear components. Antibody P1 stained the nuclear periphery homogeneously, with some small invaginations toward the interior of the nucleus. Antibody I1 detected an antigen distributed as fine granules throughout the nuclear interior. Monoclonals PI1 and PI2 stained both the nuclear periphery and interior, with some characteristic differences. During mitosis, P1 and I1 were chromosome-associated, whereas PI1 and PI2 dispersed in the cytoplasm. Antibody P1 heavily stained the periphery of the chromosome mass, and we suggest that the antigen may play a role in maintaining interphase and mitotic chromosome order. With antibody I1, bright granules were distributed along the chromosomes and there was also some diffuse internal staining. The antigen to I1 may be involved in chromatin/chromosome higher-order organization throughout the cell cycle. Antibodies PI1 and PI2 were redistributed independently during prophase, and dispersed into the cytoplasm during prometaphase. Antibody PI2 also detected antigen associated with the spindle poles.  相似文献   

2.
A method is described for isolating replication bands (RBs) from Euplotes eurystomus in quantities sufficient for biochemical analysis. The method involves the disruption of whole cells in a low ionic strength buffer that maintains RB integrity while dispersing macronuclear chromatin. The RBs are then stabilized with MgCl2 and spermidine phosphate and isolated by gradient centrifugation. Staining with silver nitrate and thiol-specific coumarin maleimide has been demonstrated in the RBs of Euplotes and other hypotrichs; both of these properties were maintained in isolated RBs. A method is also described in this study for isolating highly purified macronuclei. Examination of isolated macronuclei and RBs with electron microscopy (EM) indicates that the morphology of both structures remain essentially intact during purification. We also observe with EM an increase in the number of replicating molecules in RBs compared to macronuclei. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrates a consistent but minor enrichment of a 55 kilodalton protein in RBs when compared to macronuclear proteins.  相似文献   

3.
Monoclonal antibodies (McAbs) specific for the C-proteins of chicken pectoralis major and anterior latissimus dorsi (ALD) muscles have been produced and characterized. Antibody specificity was demonstrated by solid phase radioimmunoassay (RIA), immunoblots, and immunofluorescence cytochemistry. Both McAbs MF-1 (or MF-21) and ALD-66 bound to myofibrillar proteins of approximately 150,000 daltons; the former antibody reacted with pectoralis but not ALD myofibrils, whereas the latter recognized ALD but not pectoralis myofibrils. Chromatographic elution of the antigens from DEAE-Sephadex, and their distribution in the A-band, support the conclusion that both of these antibodies recognize variant isoforms of C-protein. Since both McAbs react with a protein of similar molecular weight in the A-band of all myofibrils of the posterior latissimus dorsi (PLD) muscle, we suggest that either another isoform of C-protein exists in the PLD muscle or both pectoralis and ALD-like isoforms coexist in the A-bands of PLD muscle.  相似文献   

4.
Salt-extracted proteins of taxol-stabilized microtubules from Chinese hamster ovary cells arrested at mitosis were used to immunize mice for hybridoma production. From a group of related monoclonal antibodies (MAbs), one, C9, recognized an epitope on antigens localized by immunofluorescence microscopy to interphase centrosomes and nuclei. The availability of the nuclear antigen was cell cycle-dependent; however, permeabilization of cells before fixation revealed that the antigen was present throughout the cell cycle. The nuclear antigen was exposed during prophase and was released from the nucleus upon nuclear envelope breakdown filling the cytoplasm of the mitotic cell. Antigenic material re-accumulated at daughter nuclei and was concealed during G1 phase. Detergent extraction of the cytoplasmic antigen from mitotic cells enabled localization of antigens to centrosomes, kinetochores, and the furrowing region/midbody. Immunoblot analysis of cells of a variety of species of origin identified an approximate 250 kD polypeptide as corresponding to the nuclear antigen, whereas polypeptides of 107/117 kD as well as approximately 250 kD accounted for the mitotic cytoplasmic antigens. No polypeptides could be associated with antigens at centrosomes, kinetochores, or midbodies. This MAb joins the antibody preparations previously reported that describe nuclear antigens, or epitopes on antigens, enhanced at mitosis.  相似文献   

5.
This paper describes the isolation of monoclonal antibodies to chromatin-associated protein antigens and their use in the characterization of such proteins by indirect immunofluorescence. Hybridomas were derived by fusion of the mouse myeloma Ag8653 with spleen cells from mice immunized with chromatin from human liver, rat liver or a human lymphoblastoid cell line. Hybrids were screened by solid-phase radioimmunoassay. The proportion of positive hybrids varied with the immunizing chromatin as follows: human liver 55/83, human lymphoblast 8/183 and rat liver 2/82. Fifteen antibodies derived from these fusions (7, 7 and 1 respectively) were subjected to further analysis. Most of these (11/13) were IgM and recognized both human and rat chromatin (12/15). Most of the target antigens were protease sensitive (8/13) and nuclease resistant. In fact the binding of five antibodies to lymphoblast chromatin was more than doubled by preincubation with DNAase I. The subcellular location of target antigens was examined by indirect immunofluorescence. Seven antibodies stained at least one of several cultured cell lines tested. Three gave staining patterns consistent with the in vivo association of the target antigen with chromatin recognizing, respectively, the interphase nucleus and metaphase chromosomes, the nuclear periphery and the mitotic spindle and other microtubule-containing structures. The remaining four all recognized antigens associated with the intermediate filament network.  相似文献   

6.
Nonbactericidal monoclonal antibodies (MAbs) directed against gonococcal surface antigens were examined for their effect on complement-mediated bactericidal killing by other MAbs and normal human serum. One MAb, SM73, directed against the H.8 antigen activated complement only moderately well and had little influence on bactericidal antibodies. Two antibodies directed against an epitope on protein III had very different effects. Antibody SM51 activated complement poorly and had no effect on bactericidal killing, whereas antibody SM50, although itself nonbactericidal, activated complement and blocked the bactericidal effect of other antibodies. The extent of the blocking ability of MAb SM50 was studied using MAbs of different specificities as well as polyclonal antisera raised against gonococcal surface antigens. Antibody SM50 blocked IgG MAbs of all specificities, but several MAbs of the IgM class retained their bactericidal effect. Each of these IgM MAbs reacted with lipopolysaccharide, but with different epitopes.  相似文献   

7.
8.
We have been using monoclonal antibodies (MAbs) as probes to study developmentally relevant cell surface antigens (CSA) that may be required for cellular interactions in Myxococcus xanthus. Three independently isolated MAbs, G69, G357, and G645, isolated by Gill and Dworkin recognize a CSA detectable only on developing cells (J. S. Gill and M. Dworkin, J. Bacteriol. 168:505-511, 1986). The CSA is made within the first 30 min of submerged development and increases until myxosporulation. The CSA is also produced at low levels after 24 h in shaken-starved cultures and during glycerol sporulation. No antigen can be detected in lysed, vegetative cells, and expression of the antigen is blocked in the presence of rifampin or chloramphenicol. The antigen is expressed in submerged, developmental cultures of asg, bsg, csg, dsg, and mgl mutants and is not expressed in a dsp mutant. All of the three MAbs immunoprecipitate the same protein of approximately 97,000 Da from lysed developmental cells. Competitive immunoprecipitations suggest that they recognize at least two different epitopes on the CSA. The epitopes recognized by MAbs G69, G357, and G645 are sensitive to protease digestion, whereas the epitopes recognized by MAbs G357 and G645 are resistant to periodate oxidation. The epitope recognized by MAb G69 is sensitive to periodate oxidation. Fractionation of lysed developing cells shows that most of the antigen is localized in the pellet after centrifugation at 100,000 x g. To determine whether the antigen is expressed on the cell surface, we labeled developing whole cells with either MAb G69, G357, or G645 and gold-labeled anti-mouse immunoglobulin G. Low-voltage scanning electron microscopy of labeled cells shows that the antigen is associated with the fibrillar matrix that surrounds the cells and that the antigen is retained on isolated, developmental fibrils from M. xanthus. The CSA has been designated dFA-1, for developmental fibrillar antigen 1.  相似文献   

9.
An immunoelectron microscopic study was performed to determine the distribution of antigenic components on particles of Chlamydia psittaci and infected cells using a number of monoclonal antibodies (MAbs). Of three anti-lipopolysaccharide (LPS) antibodies (4D5, A2 and 4G5), two antibodies (4D5 and A2) reacted with the surface of reticulate bodies (RBs) but not with that of elementary bodies (EBs). The other antibody (4G5) reacted with both EBs and RBs. Examination of infected cells in thin sections revealed that 4D5 and A2 combined with the membranes of both EBs and RBs. These results indicate that each LPS epitope localized at a different position in the chlamydial membrane. Most MAbs directed to protein antigens reacted on the surface of both EBs and RBs though 3E9 specific for the 90 kDa and 50 kDa protein components combined with RBs only.  相似文献   

10.
Analysis of neutralizing epitopes on foot-and-mouth disease virus.   总被引:7,自引:11,他引:7       下载免费PDF全文
For the investigation of the antigenic determinant structure of foot-and-mouth disease virus (FMDV), neutralizing monoclonal antibodies (MAbs) against complete virus were characterized by Western blot (immunoblot), enzyme immunoassay, and competition experiments with a synthetic peptide, isolated coat protein VP1, and viral particles as antigens. Two of the four MAbs reacted with each of these antigens, while the other two MAbs recognized only complete viral particles and reacted only very poorly with the peptide. The four MAbs showed different neutralization patterns with a panel of 11 different FMDV strains. cDNA-derived VP1 protein sequences of the different strains were compared to find correlations between the primary structure of the protein and the ability of virus to be neutralized. Based on this analysis, it appears that the first two MAbs recognized overlapping sequential epitopes in the known antigenic site represented by the peptide, whereas the two other MAbs recognized conformational epitopes. These conclusions were supported and extended by structural analyses of FMDV mutants resistant to neutralization by an MAb specific for a conformational epitope. These results demonstrate that no amino acid exchanges had occurred in the primary antigenic site of VP1 but instead in the other coat proteins VP2 and VP3, which by themselves do not induce neutralizing antibodies.  相似文献   

11.
Four human hybridoma cell lines (PEB1-4) were established from a fusion of pleural effusion lymphocytes isolated from a breast cancer patient with metastatic disease, 6 years postmastectomy. The hybridomas secreted IgG-k (3 micrograms/ml/10(6) cells). These monoclonal antibodies (PEB1-4) reacted to different degrees with mouse mammary tumor virus (MMTV) and T47D particles (HuMTV). Immunological cross-reaction was also detected with antigens isolated from body fluids of breast cancer patients (BF-Ag). The binding capacity of the monoclonal antibodies (MAbs) PEB1-4 to the above-mentioned antigens was measured by RIA. The specificity of these antibodies was further demonstrated by radioimmunoprecipitation of MMTV, T47D (HuMTV) and BF-Ag. The binding of PEB1-4 to surface antigens of intact cells grown in culture was measured by RIA. Some of the MAbs were shown to bind more avidly to breast cancer cells than to nonbreast cancer cells or nonmalignant cells. The PEB1-4 human monoclonal antibodies may be found useful in analyzing the virus-breast cancer relationship.  相似文献   

12.
A panel of ten monoclonal antibodies made against Plasmodium chabaudi and Plasmodium yoelii infected mouse erythrocytes were used for characterization of antigens present in murine malaria. Screening of the antibodies in ELISA with different fractions of infected erythrocytes revealed both species-specific and fraction-specific monoclonal antibodies (MAbs), but also MAbs cross-reacting between the species. Two MAbs bound normal erythrocyte components. Subcellular localization of the target antigens was studied by immunofluorescence and their molecular identity by immunoblotting after SDS-PAGE. Of the MAbs to P. yoelii, one reacted with a cytoplasmic granule component of 137 k and two others reacted with vacuole-associated antigens of 26 k and 25/70/73 k, respectively. The latter antibodies cross-reacted with P. chabaudi antigens. Of the MAbs to P. chabaudi, all were species specific, one reacting with parasite surface antigens of 79 and 250 k and two with a vacuole-associated antigen of 70 k.  相似文献   

13.
The cell surfaces of two Chlamydia trachomatis serovars were explored by immune electron microscopy with monoclonal antibodies that recognize a number of chlamydial outer-membrane components. Species, subspecies and serovar-reactive epitopes on the major outer-membrane protein (MOMP) of a lymphogranuloma venereum biovar strain, L2/434/Bu, and a trachoma biovar strain, F/UW-6/Cx, were exposed on the surfaces of both elementary bodies (EBs) and reticulate bodies (RBs). Three epitopes on MOMP were inaccessible on EBs and RBs of both strains. These included a genus-reactive, species-reactive, and a subspecies-reactive epitope. In contrast, genus-specific epitopes on lipopolysaccharide (LPS) were not detected on the EB surface, but were clearly expressed on RBs of both L2/434/Bu and F/UW-6/Cx chlamydiae. Antibodies specific for the 60 kDa and 12 kDa 'cysteine-rich' outer-membrane proteins did not react with surface epitopes on either EBs or RBs. These data provide evidence that MOMP is a major surface antigen of both morphological forms, whereas some portions of the LPS molecule are exposed on the RB surface but become inaccessible to antibody after conversion to the infectious EB form.  相似文献   

14.
Nine hybridoma cell lines secreting monoclonal antibodies (mAbs) against Trichinella spiralis muscle larvae (ML) excretory/secretory antigens (ESA) were developed. Two mAbs, 6-D8-E3 (6D8) and 6-B1-G10 (6B1), were studied in detail. Western blot analysis using ML ESA showed that 6D8 recognized 35- and 40-kDa constituents whereas 6B1 identified a doublet of 33 kDa. However, Western blots of SDS-PAGE of crude ML homogenate showed that 6D8 identified proteins of approximately 35 and 43-60 kDa, whereas 6B1 recognized bands of 42-50 kDa. These results indicated substantial apparent MW differences between secreted and nonsecreted proteins recognized by both mAbs. Neither 6D8 nor 6B1 reacted with adult worm ESA, but both recognized antigens in aqueous extracts of homogenates of whole adult worms. Competitive inhibition experiments using ML ESA as a target demonstrated that the antigen epitopes recognized by monoclonals 6D8, 6B1, a rat mAb, 9D4, and a 37-kDa antigen previously defined were noncross-reactive. MAbs 6D8, 6B1, and 9D4 were used to isolate proteins possessing target determinants by affinity chromatography from crude ML homogenates. Each mAb isolated distinct protein species as determined by SDS-PAGE (6B1, approximately 42 kDa; 6D8, approximately 28, 37, and 61 kDa; 9D4, approximately 29, 33, 38-57, 80, and 86 kDa). NFS mice responded in a dose-dependent manner to affinity-purified antigens and were 25-fold more effective (by weight of antigen) than either C3Heb/Fe(C3H) or B10.BR mice. Immunization of mice with 6D8, 6B1, or 9D4 antigens induced strong protection against a subsequent challenge infection in NFS mice as indicated by accelerated intestinal adult worm expulsion, reduced fecundity of the female worms, and reduction of ML burden. Affinity-isolated antigens stimulated in vitro proliferation of spleen and MLN cells from immune mice; however, the mitogenic response to these antigens barely varied among NFS, C3H, and B10.BR strains.  相似文献   

15.
In order to detect monoclonal antibodies (MAbs) from insufficient and unavailable human proteins, yeast cells were engineered to display human antigens on their surface and consequently endowed with the ability to specifically bind antibodies. Thus, a fusion gene for the expression of the human proteasome subunit alpha 6 (hPSA6) and human profilin I (hProI) were assembled, respectively, with a His.tag marker at the C-terminal and displayed on yeast surface. With anti-His.tag MAb as the primary antibody and the fluorescein isothiocyanate-conjugated goat anti-mouse Immunoglobulin G as the second antibody, the surface display of hPSA6 and hProI were verified by immunofluorescence labeling. The antigen-displayed yeast particles were used for MAbs detection from ascites through both immunofluorescence and yeast-enzyme-linked immunosorbent assay (ELISA) methods. The results were verified by Western blotting and indirect ELISA. By improving the sensitivity, the novel MAbs detection can be applied in the generation and screening of positive hybridoma. It is suggested that by combining the DNA immunization, the present study can evolve into a quick and protein-free way of MAbs production for insufficient and unavailable antigen.  相似文献   

16.
Summary— Employing several antibodies to phosphorylated protein epitopes, we demonstrate by immunostaining that the macronuclear replication band (RB) of the ciliated protozoan Euplotes eurystomus contains a high concentration of phosphoproteins. Enrichment is principally within the rear zone of the RB, the region of DNA synthesis and chromatin assembly. By immunoblot analysis, the various antibodies reacted with a diversity of macronuclear phosphoproteins, one of which was phosphorylated histone Hl. This diversity of phosphoproteins was also supported by examination of the macronuclear matrix generated by high NaCl extraction. Available evidence clearly indicates that the ultrastructural wave of chromatin modulation accompanying DNA replication is spatially correlated with a wave of localized nuclear protein phosphorylation.  相似文献   

17.
Monoclonal antibodies to tissue-specific chromatin proteins   总被引:3,自引:0,他引:3  
Antisera raised in mice to chromatins from different tissues of the chicken reacted preferentially with the chromatin type that was used for immunization. This tissue specificity was also evident in the spectrum of monoclonal antibodies generated when mice were immunized with erythrocyte chromatin. Three erythroid-specific antigens and one antigen that was present in a number of chicken tissues were characterized in further detail. These antigens, which comprised less than 0.1% of the erythrocyte chromatin proteins, were nuclear localized although three were also detected in the cytoplasm. Two of the erythroid-specific antigens existed as multiple polypeptides in isolated chromatin. The multiple chromatin forms of one antigen were derived from a precursor protein that was selectively cleaved within 1 min after erythrocyte lysis. Analysis of this antigen in extracts from erythrocytes and reticulocytes indicated that the cleavage of the precursor protein was developmentally regulated in vivo.  相似文献   

18.
The herpes simplex virus type 1 (HSV-1) UL8 DNA replication protein is a component of a trimeric helicase-primase complex. Sixteen UL8-specific monoclonal antibodies (MAbs) were isolated and characterized. In initial immunoprecipitation experiments, one of these, MAb 804, was shown to coprecipitate POL, the catalytic subunit of the HSV-1 DNA polymerase, from extracts of insect cells infected with recombinant baculoviruses expressing the POL and UL8 proteins. Coprecipitation of POL was dependent on the presence of UL8 protein. Rapid enzyme-linked immunosorbent assays (ELISAs), in which one protein was bound to microtiter wells and binding of the other protein was detected with a UL8- or POL-specific MAb, were developed to investigate further the interaction between the two proteins. When tested in the ELISAs, five of the UL8-specific MAbs consistently inhibited the interaction, raising the possibility that these antibodies act by binding to epitopes at or near a site(s) on UL8 involved in its interaction with POL. The epitopes recognized by four of the inhibitory MAbs were approximately located by using a series of truncated UL8 proteins expressed in mammalian cells. Three of these MAbs recognized an epitope near the C terminus of UL8, which was subjected to fine mapping with a series of overlapping peptides. The C-terminal peptides were then tested in the ELISA for their ability to inhibit the POL-UL8 interaction: the most potent exhibited a 50% inhibitory concentration of approximately 5 microM. Our findings suggest that the UL8 protein may be involved in recruiting HSV-1 DNA polymerase into the viral DNA replication complex and also identify a potential new target for antiviral therapy.  相似文献   

19.
Subcellular localization of the retinoblastoma protein   总被引:7,自引:0,他引:7  
The subcellular localization of the retinoblastoma (RB) protein has been studied in primate cell lines by immunofluorescence staining using different monoclonal and polyclonal antibodies. The protein appeared as granules of heterogeneous size over the interphase nuclei. Computer assisted digital overlap analysis indicated that it was predominantly localized in euchromatic areas with low DNA density. The largest RB positive grains lined up on the heterochromatin/euchromatin boundary. During mitosis, the RB protein dissociated from the condensing chromosomes. It was dispersed throughout the cytoplasm during metaphase and anaphase, and it reassociated with the decondensing chromatin during telophase. A new monoclonal antibody, designated aRB1C1, was raised against a bacterial TrpE/human retinoblastoma protein. It specifically recognized the nonphosphorylated and differentially phosphorylated forms of the RB protein in immunoprecipitation experiments. A collection of RB expressing cell lines gave a positive staining reaction with the antibody, whereas the RB negative Weri-RB-27 retinoblastoma and OHS osteosarcoma cells failed to react. Wild-type RB complementary DNA was introduced into Weri-RB-27 by retrovirus mediated gene transfer. Similar experiments were performed with the DU145 prostatic carcinoma cell line that expresses a mutant RB protein. Reconstituted cells of both lines expressed the normal size RB protein and gave a positive immunofluorescence reaction with the aRB1C1 and other anti-RB antibodies. The new monoclonal antibody, however, showed cell type dependent differences of the staining pattern compared to other anti-RB antibodies, suggesting differentiation dependent accessibility to its epitope.  相似文献   

20.
We raised monoclonal antibodies by immunizing mice with total chromosome proteins extracted from isolated human metaphase chromosomes. The indirect immunofluorescence screening of hybridoma cell lines provided 15 monoclonal antibodies against the chromosomal antigens. The antigen proteins of the mAbs were identified by immunoblotting as core histones or by immunoprecipitation followed by a peptide mass fingerprinting method as nuclear mitotic apparatus protein, heterogeneous nuclear ribonucleoprotein A2/B1, ribosomal protein S4, linker histone and beta-actin. During mitosis, localizations of these proteins on chromosomes were clearly observed using the obtained antibodies. These results indicate that the current strategy is effective for obtaining monoclonal antibodies useful for immunoblotting and/or immunofluorescent staining of human proteins, using the antigens with high homology to mouse proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号