首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
The effects of low temperature (−18°C) on the stability and partitioning of some glycolytic enzymes within an aqueous two-phase system were studied. The enzymes were phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase present in a crude extract of bakers' yeast. The partitioning of pure phosphofructokinase, isolated from bakers' yeast, was also examined. The two-phase systems were composed of water, poly(ethylene glycol), dextran, and ethylene glycol and buffer. The influence on the partitioning of the presence of ethylene glycol, phenylmethylsulfonyl fluoride and poly(ethylene glycol)-bound Cibacron Blue F3G-A was investigated at −18, 0 and (in some cases) 20°C. The presence of ethylene glycol, phase polymers and low temperature stabilized all three enzyme activities. Cibacron Blue, an affinity ligand for phosphofructokinase, increased its partitioning into the upper phase with decreasing temperature. Depending on the conditions, various amounts of the enzymes were recovered at the interface, also in systems not containing ethylene glycol. The implications of the observed effects on the use of aqueous two-phase systems for the extraction and fractionation of proteins are discussed.  相似文献   

2.
Partition equilibrium experiments have been used to characterize the interactions of erythrocyte ghosts with four glycolytic enzymes, namely aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase and lactate dehydrogenase, in 5 mM sodium phosphate buffer (pH 7.4). For each of these tetrameric enzymes a single intrinsic association constant sufficed to describe its interaction with erythrocyte matrix sites, the membrane capacity for the first three enzymes coinciding with the band 3 protein content. For lactate dehydrogenase the erythrocyte membrane capacity was twice as great. The membrane interactions of aldolase and glyceraldehyde-3-phosphate dehydrogenase were mutually inhibitory, as were those involving either of these enzymes and lactate dehydrogenase. Although the binding of phosphofructokinase to erythrocyte membranes was inhibited by aldolase, there was a transient concentration range of aldolase for which its interaction with matrix sites was enhanced by the presence of phosphofructokinase. In the presence of a moderate concentration of bovine serum albumin (15 mg/ml) the binding of aldolase to erythrocyte ghosts was enhanced in accordance with the prediction of thermodynamic nonideality based on excluded volume. At higher concentrations of albumin, however, the measured association constant decreased due to very weak binding of the space-filling protein to either the enzyme or the erythrocyte membrane. The implications of these findings are discussed in relation to the likely subcellular distribution of glycolytic enzymes in the red blood cell.  相似文献   

3.
Studies by dynamic and total intensity light scattering, ultracentrifugation, electron microscopy, and chemical crosslinking on solutions of the pig heart mitochondrial enzymes, malate dehydrogenase and citrate synthase (separately and together) demonstrate that polyethylene glycol induces very large homoassociations of each enzyme, and still larger heteroenzyme complexes between these two enzymes in the solution phase. Specificity of this heteroassociation is indicated by the facts that heteroassociations with bovine serum albumin were not observed for either the mitochondrial dehydrogenase or the synthase or between cytosolic malate dehydrogenase and citrate synthase. The weight fraction of the enzymes in the mitochondrial dehydrogenase-synthase associated particles in the solution phase was less than 0.03% with the dilute conditions used in the dynamic light scattering measurements. Neither palmitoyl-CoA nor other solution conditions tested significantly increased this weight fraction of associated enzymes in the solution phase. Because of the extremely low solubility of the associated species, however, the majority of the enzymes can be precipitated as the heteroenzyme complex. This precipitation is a classical first-order transition in spite of the large particle sizes and broad size distribution. Ionic effects on the solubility of the heteroenzyme complex appear to be of general electrostatic nature. Polyethylene glycol was found to be more potent in precipitating this complex than dextrans, polyvinylpyrrolidones, ficoll, and beta-lactoglobulin.  相似文献   

4.
The catalytic activity, expressed as Km and Vmax values, of 16 enzymes of practical interest with the macromolecular coenzymes poly(ethylene glycol)-N6-(2-aminoethyl)-NAD+ and poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ and their low molecular weight precursors N6-(2-aminoethyl)-NAD+ and N6-(2-aminoethyl)-NADP+, was investigated. The enzymes examined are of direct interest for organic synthesis (i.e. alcohol dehydrogenase from yeast, horse liver, or Thermoanaerobium brockii, lactic dehydrogenase, and several hydroxysteroid dehydrogenases) or are used for the regeneration of NAD+, NADP+, NADH, or NADPH (i.e. glutamate dehydrogenase from liver or Proteus, formate dehydrogenase, glucose dehydrogenase, and malic enzyme). The cycling efficiency of poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ was examined with coupled-enzymes or coupled-substrates systems. Poly(ethylene glycol)-N6-(2-aminoethyl)-NAD+ and, even more so, poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ were excellent coenzymes with several dehydrogenases. In addition, the coenzymatic properties of N6-(3-sulfonatopropyl)-NAD+, an NAD+ derivative carrying a strong anionic group, were compared with those of the newly synthesized N6-(2-hydroxy-3-trimethylammonium propyl)-NAD+, an NAD+ derivative carrying a strong cationic group. It was expected that the presence of the sulfonic or quaternary ammonium group would enhance the residence time of the coenzyme inside continuous-flow reactors if membranes with anionic or cationic groups, respectively, were used.  相似文献   

5.
The hydroxyl groups of poly(ethyleneglycol) have been esterified (partly) with a number of carboxylic acids. When these esters are included in dextranpoly(ethyleneglycol)-water biphasic systems the partitions of proteins and membranes between the two phases (and the interface) are in some cases strongly affected. The affinity of serum albumin for the poly(ethyleneglycol)-rich phase is strongly increased when the fatty acid group consists of more than 10 carbon atoms. The partition also depends on the number of double bonds in the fatty acid. A corresponding relationship is found for membranes from spinach chloroplasts. The partitions of ovalbumin, lysozyme (EC 3.2.1.17) and ribonuclease (EC 3.1.4.22) are not influenced by the fatty acid esters. Esters of dibasic carboxylic acids show a minute but marked effect on the partition of proteins in general while malate and tartrate esters affect strongly the partition of chloroplast membranes. The partitions of both proteins and membranes are influenced by poly(ethyleneglycol) deoxycholate. Experiments with malate dehydrogenase (EC 1.1.1.37), lactate dehydrogenase (EC 1.1.1.27), fumarase (EC 4.2.1.2), enolase (EC 4.2.1.11) and glutamate-oxaloacetate transaminase (EC 2.6.1.1) show that their partitions, measured on enzymic activity basis, is changed when esters of benzoic, linolenic, tartaric or deoxycholic acid are included in the biphasic system. The mechanism behind the effect of the esterified poly(ethyleneglycol) on the partition of biomaterial, in this type of aqueous biphasic systems, is discussed in terms of a direct binding of the esters to the partitioned material.  相似文献   

6.
K Tauchert  A Jahn    J Oelze 《Journal of bacteriology》1990,172(11):6447-6451
Batch cultures of Azotobacter vinelandii were inoculated with cells pregrown on either acetate or glucose. When they were subsequently grown on a mixture of acetate and glucose, typical diauxic growth was observed, with preferential uptake of acetate in the first and glucose in the second phase of growth. Extracts from acetate-pregrown cells exhibited high acetate kinase activity in the first phase of growth. This activity decreased and activities of the two glucose enzymes glucose 6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase increased in the second phase. Extracts from glucose-pregrown cells exhibited high initial activities of the two glucose enzymes, which decreased while acetate kinase activity increased in the first phase of growth. Again, in the second phase, activities of the two glucose enzymes increased and acetate kinase activity decreased. In any case, isocitrate dehydrogenase activity varied only slightly and unspecifically. The differences in enzyme activity and the constancy of isocitrate dehydrogenase were confirmed by experiments with either acetate- or glucose-limited chemostats. In chemostats in which both of the substrates were limiting, all of the enzymes displayed significant activities. Glucose 6-phosphate dehydrogenase activity was inhibited by acetyl coenzyme A and acetyl phosphate but not by acetate. It is proposed that diauxic growth is based on the control of enzymes involved in acetate or glucose dissimilation by which acetate or its metabolites control the expression and activity of glucose enzymes.  相似文献   

7.
Effect of Gossypol on Some Oxidative Respiratory Enzymes   总被引:3,自引:2,他引:1  
Gossypol was examined in relation to its effect on certain enzymes and enzyme complexes associated with the tricarboxylic acid cycle and the electron transport system. Succinic dehydrogenase and cytochrome oxidase activity from sweet potato was completely inhibited by gossypol at 7.5 x 10(-3)m and 2.0 x 10(-3)m, respectively. Succinoxidase activity of the same preparations was fully inhibited at a lower concentration, 2.5 x 10(-4)m. This concentration did not affect either succinic dehydrogenase or cytochrome oxidase, the primary and terminal enzymes of the succinoxidase complex. The nature of the intermediate step or steps inhibited at this concentration is not yet known. Gossypol was further shown to inhibit phosphorylation at concentrations having no appreciable effect on oxidation. Inhibition in general was not reduced by increased substrate concentrations in the enzyme systems examined, with the exception of cytochrome c for cytochrome oxidase. Bovine serum albumin was partially effective in reducing gossypol inhibition, provided that it was present before enzyme exposure to gossypol.  相似文献   

8.
A (poly)histidine tag was fused to either the N- or the C-terminus of L-lactate dehydrogenase (LDH) of Bacillus stearothermophilus to facilitate purification and immobilization of these enzymes. The C-terminally tagged enzyme displayed lower activity compared both to the wild-type and to the N-terminally tagged variant. The reason for this loss of activity was investigated by affinity chromatography of the enzymes on a 5'-AMP-Sepharose resin and by size-exclusion chromatography. The C-terminally tagged enzyme could be separated into an inactive, unbound fraction and an active, bound fraction. Further differences between the C-terminally tagged enzyme and the N-terminally tagged and wild-type LDH were observed on size-exclusion chromatography of the three enzymes. These data suggest that the introduction of a "his-tag" at the C-terminus may induce misfolding of the LDH and serve as a warning that the introduction of a (poly)histidine tag can produce unforseen changes in a protein.  相似文献   

9.
Plasma contains many enzymes that are probably derived from damaged cells. These enzymes are cleared at characteristic rates. We showed previously that in rats the rapid clearance of alcohol dehydrogenase, lactate dehydrogenase M4 and the mitochondrial and cytosolic isoenzymes of malate dehydrogenase is largely due to endocytosis by macrophages in liver, spleen and bone marrow. We now demonstrate that uptake of each of the enzymes by these tissues is in general decreased by simultaneous injection of a high dose of one of the other dehydrogenases or a high dose of adenylate kinase or creatine kinase. A similar dose of colloidal albumin did not significantly decrease uptake of the four dehydrogenases. Nor was uptake of colloidal albumin, apo-peroxidase from horseradish or multilamellar liposomes influenced by a high dose of mitochondrial malate dehydrogenase. These results indicate that the four dehydrogenases and the two kinases are specifically endocytosed via the same receptor. We suggest that this receptor contains a group, possibly a nucleotide, with affinity for the nucleotide-binding sites of the enzymes.  相似文献   

10.
In partition experiments in aqueous two-phase systems composed of 10% (w/w) dextran (Mr=500000) and 7.510 (w/w) poly(ethylene-glycol) (Mr=6000) prealbumin and albumin are directed into the dextran-rich phase. Addition of Remazol Yellow GGL covalently bound to poly(ethylene-glycol) causes a transfer of prealbumin and albumin into the poly(ethylene-glycol)-rich phase. This indicates an interaction of both proteins with the dye (affinity phase partitioning).The affinity partitioning effect on prealbumin is markedly increased by an excess of monomeric albumin. This points to an interaction of the two proteins in the presence of the dye.Binding of free Remazol Yellow GGL to prealbumin and albumin was investigated by means of equilibrium dialysis and difference spectroscopy. In respect to prealbumin equilibrium dialysis resulted in the binding of four molecules of the dye to two classes of binding sites with dissociation constants of KH=3.3 IM and KL=258 µM respectively whereas albumin was found to bind eight molecules of the dye to two classes of binding sites with KH=5.8 µM and KL=282 µM. Similar binding stoichiometries were found by difference spectroscopy.By application of difference spectroscopy and affinity phase partitioning thyroxine and triiodothyronine known as natural ligands of prealbumin and albumin were found to compete with Remazol Yellow GGL for the dye binding sites of the proteins.  相似文献   

11.
Acinetobacter calcoaceticus possesses an L(+)-lactate dehydrogenase and a D(-)-lactate dehydrogenase. Results of experiments in which enzyme activities were measured after growth of bacteria in different media indicated that the two enzymes were co-ordinately induced by either enantiomer of lactate but not by pyruvate, and repressed by succinate or L-glutamate. The two lactate dehydrogenases have very similar properties to L(+)-mandelate dehydrogenase and D(-)-mandelate dehydrogenase. All four enzymes are NAD(P)-independent and were found to be integral components of the cytoplasmic membrane. The enzymes could be solubilized in active form by detergents; Triton X-100 or Lubrol PX were particularly effective D(-)-Lactate dehydrogenase and D(-)-mandelate dehydrogenase could be selectively solubilized by the ionic detergents cholate, deoxycholate and sodium dodecyl sulphate.  相似文献   

12.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

13.
The regulation of the glutamate dehydrogenases was investigated in wild-type Neurospora crassa and two classes of mutants altered in the assimilation of inorganic nitrogen, as either nitrate or ammonium. In the wild-type strain, a high nutrient carbon concentration increased the activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-glutamate dehydrogenase and decreased the activity of reduced nicotinamide adenine dinucleotide (NADH)-glutamate dehydrogenase. A high nutrient nitrogen concentration had the opposite effect, increasing NADH-glutamate dehydrogenase and decreasing NADPH-glutamate dehydrogenase. The nit-2 mutants, defective in many nitrogen-utilizing enzymes and transport systems, exhibited low enzyme activities after growth on a high sucrose concentration: NADPH-glutamate dehydrogenase activity was reduced 4-fold on NH(4)Cl medium, and NADH-glutamate dehydrogenase, 20-fold on urea medium. Unlike the other affected enzymes of nit-2, which are present only in basal levels, the NADH-glutamate dehydrogenase activity was found to be moderately enhanced when cells were grown on a low carbon concentration. This finding suggests that the control of this enzyme in nit-2 is hypersensitive to catabolite repression. The am mutants, which lack NADPH-glutamate dehydrogenase activity, possessed basal levels of NADH-glutamate dehydrogenase activity after growth on urea or l-aspartic acid media, like the wild-type strain, and possessed moderate levels (although three- to fourfold lower than the wild-type strain) on l-asparagine medium or l-aspartic acid medium containing NH(4)Cl. These regulatory patterns are identical to those of the nit-2 mutants. Thus, the two classes of mutants exhibit a common defect in NADH-glutamate dehydrogenase regulation. Double mutants of nit-2 and am had lower NADH-glutamate dehydrogenase activities than either parent. A carbon metabolite is proposed to be the repressor of NADH-glutamate dehydrogenase in N. crassa.  相似文献   

14.
The reductase enzymes in Nitrosomonas and Nitrobacter were studied under anaerobic conditions when the oxidase enzymes were inactive. The most effective electron-donor systems for nitrate reductase in Nitrobacter were reduced benzyl viologen alone, phenazine methosulphate with either NADH or NADPH, and FMN or FAD with NADH. Nitrite and hydroxylamine reductases were found in both nitrifying bacteria, and optimum activity for each enzyme was obtained with NADH or NADPH with either FMN or FAD. The product of both these enzymes was identified as ammonia. In extracts of Nitrosomonas the ammonia was further utilized by an NADPH-specific glutamate dehydrogenase. (15)N-labelled nitrite, hydroxylamine and ammonia were rapidly incorporated into cell protein by Nitrosomonas, and Nitrobacter in addition incorporated [(15)N]nitrate. Relatively gentle methods of cell disruption were compared with ultrasonic treatment, to enable a more exact study to be undertaken of the intracellular distribution of the oxidase and reductase enzymes. The functional relationship of these opposing enzyme systems in the nitrifying bacteria is considered.  相似文献   

15.
The interaction of human serum albumin with fatty acids has been determined using the method of affinity partitioning in aqueous biphasic systems containing dextran, poly(ethylene glycol) and esters of dicarboxylic acids with poly(ethylene glycol). The difference in the partition of albumin in phase systems with and without the poly(ethylene glycol)-bound fatty acid group provides a measure of the interaction of fatty acids with the protein. The relative contribution of the polar and non-polar interaction to the binding of fatty acids to albumin has been estimated by comparing the present data with that obtained earlier using poly(ethylene glycol)-bound straight chain aliphatic hydrocarbons. In both cases, the aliphatic chain should contain a minimum of 8 carbon atoms to affect the partition of albumin and that the maximum effect is obtained with chains containing 16 carbon atoms. The effect of the polymer-bound fatty acid group is higher than the corresponding hydrocarbon only when the number of carbon atoms in it exceeds 12. The relative effect of polymer-bound 16-carbon chains, with and without a carboxyl group in the terminal position is independent of pH in the range 5--9.  相似文献   

16.
Glycolytic enzyme interactions with tubulin and microtubules   总被引:2,自引:0,他引:2  
Interactions of the glycolytic enzymes glucose-6-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase type-M, and lactate dehydrogenase type-H with tubulin and microtubules were studied. Lactate dehydrogenase type-M, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase demonstrated the greatest amount of co-pelleting with microtubules. The presence of 7% poly(ethylene glycol) increased co-pelleting of the latter four enzymes and two other enzymes, glucose-6-phosphate isomerase, and phosphoglycerate kinase with microtubules. Interactions also were characterized by fluorescence anisotropy. Since the KD values of glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase for tubulin and microtubules were all found to be between 1 and 4 microM, which is in the range of enzyme concentration in cells, these enzymes are probably bound to microtubules in vivo. These observations indicate that interactions of cytosolic proteins, such as the glycolytic enzymes, with cytoskeletal components, such as microtubules, may play a structural role in the formation of the microtrabecular lattice.  相似文献   

17.
Encapsulation of enzymes (lactate dehydrogenase and urease) in polyelectrolyte shells was assessed with a view to designing enzymic microdiagnostics for low-molecular compounds in native biological fluids. Polyelectrolyte microcapsules were prepared with two polyanions [poly(styrenesulfonate) PSS and dextran sulfate DS] and two polycations [poly(allylamine) PAA and poly(diallyldimethylammonium) PDADMA]; calcium carbonate microspherulites with embedded enzymes served as “cores.” It was demonstrated that the main problem in making such a biosensor is to select a pair of oppositely charged polyelectrolytes that would be optimal for enzyme functioning. The best pairs were PAA/DS and PAA/PSS for lactate dehydrogenase, and PSS/PAA and PSS/PDADMA for urease. We designed and prepared enzyme-containing microcapsules differing in polyelectrolyte composition and number of layers, and investigated their properties.  相似文献   

18.
The target size of four soluble enzymes (beta-galactosidase, pyruvate kinase, alcohol dehydrogenase, and glucose-6-phosphate dehydrogenase) in the presence or absence of subcellular membrane fractions has been determined by the radiation-inactivation method using samples in the frozen state. For each of the four enzymes, full activity was recovered after freezing and thawing in the absence of radiation. We found minimal (less than 20%) binding of the enzymes to either submitochondrial vesicles or sarcoplasmic reticulum vesicles. Under the conditions tested, beta-galactosidase, pyruvate kinase, and alcohol dehydrogenase exhibited target sizes which varied according to the experimental conditions, i.e., the buffer selected and also the presence or absence of membrane preparations. For these tetrameric enzymes, the target sizes were generally comparable to either a monomer or a dimer. By contrast, the target size of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was found to be essentially invariant when frozen in a variety of buffers and in the presence or absence of either cryoprotectant (sucrose or glycerol) or different membrane preparations. The target size from 19 separate determinations gave an average value of 104 +/- 16 kDa, which is comparable to the molecular weight of the enzyme (104 kDa). We conclude that glucose-6-phosphate dehydrogenase from L. mesenteroides is a reliable internal standard for radiation-inactivation studies of membrane preparations in the frozen state.  相似文献   

19.
The binding of porcine heart mitochondrial malate dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase to bovine heart NADH:ubiquinone oxidoreductase (complex I), but not that of bovine heart alpha-ketoglutarate dehydrogenase complex, is virtually abolished by 0.1 mM NADH. The malate dehydrogenase and beta-hydroxyacyl-CoA enzymes compete in part for the same binding site(s) on complex I as do the malate dehydrogenase and alpha-ketoglutarate dehydrogenase complex enzymes. Associations between mitochondrial malate dehydrogenase and bovine serum albumin were observed. Subtle convection artifacts in short-time centrifugation tests of enzyme association with the Beckman Airfuge are described. Substrate channeling of NADH from both the mitochondrial and cytoplasmic malate dehydrogenase isozymes to complex I and reduction of ubiquinone-1 were shown to occur in vitro by transient enzyme-enzyme complex formation. Excess apoenzyme causes little inhibition of the substrate channeling reaction with both malate dehydrogenase isozymes in spite of tighter equilibrium binding than the holoenzyme to complex I. This substrate channeling could, in principle, provide a dynamic microcompartmentation of mitochondrial NADH.  相似文献   

20.
Several glycolytic enzymes (lactate dehydrogenase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase) were radiolabelled by [125I]iodination, conjugation with 125I-labelled Bolton & Hunter reagent and reductive [3H]methylation, and their degradative rates after microinjection into 3T3-L1 cells compared with that of the extracellular protein bovine serum albumin. Although the albumin remains largely cytosolic in recipient cells, the glycolytic enzymes rapidly (less than 30 min) become insoluble, as measured by detergent and salt extractions. The microinjected glycolytic enzymes appear to form disulphide-linked aggregates, are found in a cell fraction rich in vimentin-containing intermediate filaments and histones (nuclear-intermediate-filament fraction), and are degraded slowly by a lysosomal mechanism, as judged by the effects of inhibitors (NH4Cl, leupeptin, 3-methyladenine). 125I-labelled bovine serum albumin appears to be degraded rapidly and non-lysosomally. Prolonged treatment (96 h) of cultured cells with leupeptin results in the accumulation of pulse-labelled ([35S]methionine for 24 h) endogenous cell proteins in the detergent-and salt-non-extractable residue, but NH4Cl and 3-methyladenine do not have this effect. The findings are in terms of the interpretation of experiments involving microinjection of proteins to study intracellular protein protein degradation by autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号