首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acidosis in cardiac myocytes is a major factor in the reduced inotropy that occurs in the ischemic heart. During acidosis, diastolic calcium concentration and the amplitude of the calcium transient increase, while the strength of contraction decreases. This has been attributed to the inhibition by protons of calcium uptake and release by the sarcoplasmic reticulum, to a rise of intracellular sodium caused by activation of sodium-hydrogen exchange, decreased calcium binding affinity to Troponin-C, and direct effects on the contractile machinery. The relative contributions and concerted action of these effects are, however, difficult to establish experimentally. We have developed a mathematical model to examine altered calcium-handling mechanisms during acidosis. Each of the alterations was incorporated into a dynamical model of pH regulation and excitation-contraction coupling to predict the time courses of key ionic species during acidosis, in particular intracellular pH, sodium and the calcium transient, and contraction. This modeling study suggests that the most significant effects are elevated sodium, inhibition of sodium-calcium exchange, and the direct interaction of protons with the contractile machinery; and shows how the experimental data on these contributions can be reconciled to understand the overall effects of acidosis in the beating heart.  相似文献   

2.
Summary The effects of metabolic and respiratory acidosis and alkalosis on cellular calcium metabolism were studied in rat kidney cells dispersed with collagenase. In both types of acidosis, the intracellular pH, total cell calcium, and the cell relative radioactivity after 60 min of labeling are significantly depressed. Kinetic analysis of45Ca desaturation curves shows that acidosis decreases all three cellular calcium pools and depresses calcium fluxes between the superficial and cytosolic pools and between the cytosolic and mitochondrial pools. In alkalosis the intracelluar pH, the total cell calcium, and the cell relative radioactivity are significantly increased. Kinetic studies show that in alkalosis, only the mitochondrial pool is consistently increased. Calcium exchange between the mitochondrial and cytosolic pool is increased in metabolic alkalosis only. These results suggest that hydrogen ion is an important modulator of calcium metabolism, and that the intracellular pH rather than extracellular pH is the critical factor in determining the calcium status of cells during altered acid-base conditions.  相似文献   

3.
Ischemia-reperfusion causes endothelial dysfunction. Prolongation of acidosis during initial cardiac reperfusion limits infarct size in animal models, but the effects of acidic reperfusion on vascular function are unknown. The present work analyzes the effects of acidic reoxygenation on vascular responses to different agonists in rat aortic rings. Arterial rings obtained from Sprague-Dawley rat aorta were placed in organ baths containing a Krebs solution oxygenated at 37 degrees C (pH 7.4). After equilibration (30 mN, 1 h), the effects of acidosis (pH 6.4) on aortic responses to acetylcholine and norepinephrine were initially assessed under normoxic conditions. Thereafter, the effects of acidosis during hypoxia (1 h) or reoxygenation on aortic responses to acetylcholine, norepinephrine, or sodium nitroprusside were analyzed and compared with those observed in control rings. Acidosis did not modify aortic responses to acetylcholine or adrenaline during normoxia. In contrast, rings submitted to hypoxia and reoxygenated at pH 7.4 showed a reduction in vasodilator responses to acetylcholine and in contractions to norepinephrine with no change in responses to sodium nitroprusside. Reoxygenation at pH 6.4 did not modify the depressed response to norepinephrine but enhanced the recovery of acetylcholine-induced vasorelaxation. Cumulative concentration-response curves to acetylcholine showed an increased responsiveness to this drug in rings reoxygenated at a low pH. This functional improvement was associated with the preservation of aortic cGMP content after stimulation of reoxygenated rings with acetylcholine. In conclusion, acidic reoxygenation preserves endothelial function in arterial rings submitted to simulated ischemia, likely through the preservation of cGMP signaling.  相似文献   

4.
The treatment of the bundles of rat myocardial fibers with ethyleneglycol-bis(beta-aminoethyl ether)-N,N-tetraacetate (EGTA) made the sarcolemma permeable for ions and small molecules. At the incubation medium pH 7.0 the EGTA-treated fibers developed a half-maximal tension at pCa 5.4, and the maximal tension at pCa 4.8. Inorganic phosphate (10 mM) reduced the maximal tension by 18 +/- 3% and decreased the calcium sensitivity of the myofibrils so that there was a shift of the pCa/tension curve by 0.3 unit to the right. Acidosis (pH 6.6) also decreased significantly the calcium sensitivity, while the presence of 10 mM phosphate produced additional depression of the calcium sensitivity. It is concluded that phosphate accumulation by the ischemic myocardium combined with acidosis may depress the contractility not only due to depletion of the free calcium concentration in the myoplasm but also as a result of the reduced calcium sensitivity of myofibrils.  相似文献   

5.
We assessed the effect of acidosis on cell killing during anoxia and reoxygenation in cultured rat neonatal cardiac myocytes. After 4.5 hours of anoxia and glycolytic inhibition with 2-deoxyglucose, loss of viability was greater than 90% at pH 7.4. In contrast, at pH 6.2-7.0, viability was virtually unchanged. To model changes of pH and oxygenation during ischemia and reperfusion, myocytes were made anoxic at pH 6.2 for 4 hours, followed by reoxygenation at pH 7.4. Under these conditions, reoxygenation precipitated loss of viability to about half the cells. When pH was increased to 7.4 without reoxygenation, similar lethal injury occurred. No cell killing occurred after reoxygenation at pH 6.2. We conclude that acidosis protects against lethal anoxic injury, and that a rapid return from acidotic to physiologic pH contributes significantly to reperfusion injury to cardiac myocytes - a 'pH paradox'.  相似文献   

6.
Summary The effects of acidosis and extracellular calcium were examined at 20°C in the isolated spontaneously contracting atria of the freshwater turtle (Chrysemys picta bellii). The atria were subjected to treatments of lactic acidosis, hypercapnic acidosis or chloride acidosis in the presence of both normal (2.0 mM) and high (10.0 mM) calcium, which simulated levels of acidosis and calcium observed in vivo. In all cases of acidosis, pH was reduced to 6.80 from a control pH of 7.80.All three forms of acidosis significantly depressed the force of atrial contraction. During lactic and chloride acidosis a progressive decrease in contractile force was seen, while during hypercapnic acidosis a spontaneous partial recovery was observed following an initial sharp drop in tension. Hypercapnic acidosis had the most rapid effect on contractility, while chloride had the slowest effect.Elevated levels of calcium during lactic and hypercapnic acidoses significantly moderated the negative inotropic effects of acidosis, although contractile force was still below pre-acid values. During chloride acidosis with increased [Ca], no decline in contractile force was observed compared to the control values. Each of the three types of acidoses caused a significant decrease in the frequency of the spontaneous atrial contractions but this effect was not significantly improved with acidosis plus increased [Ca].Based on the present findings and on related observations of acidosis, it appears that the fresh-water turtle is able to compensate for the negative inotropic effects on the heart of both lactic and hypercapnic acidosis, and these compensations may contribute to its remarkable tolerance to anoxia.  相似文献   

7.
The effect of acid-base balance on fatigue of skeletal muscle   总被引:5,自引:0,他引:5  
H+ ions are generated rapidly when muscles are maximally activated. This results in an intracellular proton load. Typical proton loads in active muscles reach a level of 20-25 mumol X g-1, resulting in a fall in intracellular pH of 0.3-0.5 units in mammalian muscle and 0.6-0.8 units in frog muscle. In isolated frog muscles stimulated to fatigue a proton load of this magnitude is developed, and at the same time maximum isometric force is suppressed by 70-80%. Proton loss is slowed when external pH is kept low. This is paralleled by a slow recovery of contractile tension and seems to support the idea that suppression results from intracellular acidosis. Nonfatigued muscles subjected to similar intracellular proton loads by high CO2 levels show a suppression of maximal tension by only about 30%. This indicates that only a part of the suppression during fatigue is normally due to the direct effect of intracellular acidosis. Further evidence for a component of fatigue that is not due to intracellular acidosis is provided by the fact that some muscle preparations (rat diaphragm) can be fatigued with very little lactate accumulation and very low proton loads. Even under these conditions, a low external pH (6.2) can slow recovery of tension development 10-fold compared with normal pH (7.4). We must conclude that there are at least two components to fatigue. One, due to a direct effect of intracellular acidosis, acting directly on the myofibrils, accounts for a part of the suppression of contractile force. A second, which in many cases may be the major component, is not dependent on intracellular acidosis. This component seems to be due to a change of state in one or more of the steps of the excitation-contraction coupling process. Reversal of this state is sensitive to external pH which suggests that this component is accessible from the outside of the cell.  相似文献   

8.
Experiments were performed on sheep cardiac Purkinje fibres using pH- and sodium-selective microelectrodes, while simultaneously measuring tension, to determine if the fall in intracellular pH (pHi) following a rise in intracellular Na+ activity (aiNa) is caused by inhibition or reversal of acid extrusion on Na+-H+ exchange. A rise in aiNa was induced either by using the cardioactive steroid strophanthidin to inhibit the sarcolemmal Na+-K+ pump or by increasing the frequency of stimulation (0-4 Hz). Both of these manoeuvres led to an increase in aiNa and a decrease in pHi. Following exposure to strophanthidin, amiloride (an inhibitor of sarcolemmal Na+-H+ exchange) produced a decrease in both pHi and aiNa. These effects of amiloride increased with decreasing pHi, indicating that acid extrusion on Na+-H+ exchange is stimulated by the fall in pHi. The changes in intracellular Na+ and H+ caused by amiloride were quantitatively consistent with an electroneutral stoichiometry. The fall in pHi during strophanthidin exposure is therefore not caused by inhibition or reversal of acid extrusion Na+-H+ exchange. It is likely that the fall in pHi during a rate increase is also independent of Na+-H+ exchange. This is because (i) it has been shown previously to occur in the presence of amiloride and (ii) the calcium antagonist D600 completely abolished the stimulation-dependent fall in pHi. It is concluded that the intracellular acidosis following inhibition of the sarcolemmal Na+-K+ pump or following an increase in the rate of stimulation is secondary to a rise in intracellular calcium.  相似文献   

9.
The fluorescent indicator indo-1 is widely used to monitor intracellular calcium concentration. However, quantitation is limited by uncertain effects of the intracellular environment on indicator properties. The goal of this study was to determine the effects of protein and acidosis on the fluorescence spectra and calcium dissociation constant (Kd) of indo-1. With 350 nm excitation light, the ratio of indo-1 fluorescence in the absence versus the presence of saturating Ca2+ at wavelength lambda (S lambda) and Kd increased with [protein]. At pH 7.3, Kd, S400, and S470, which were 210 nM, 0.033, and 1.433 in the absence of protein, increased to 808 nM, 0.161, and 2.641, respectively, by adding proteins from frog muscle and to 638 nM, 0.304, and 3.039, respectively, by adding proteins from rat heart. Effects of protein on indo-1 fluorescence were reduced at higher [indo-1]. Acidosis (pH 6.3) had separate effects, which were additive to those of protein: in the absence of protein, acidosis increased Kd to 640 nM; frog muscle proteins further increased Kd to 1700 nM. Acidosis also changed S lambda slightly. In summary, interaction with protein or protons alters indo-1 calcium-binding and fluorescence. These findings are consistent with several previous studies and suggest that indo-1 calibration constants need to be derived in the presence of appropriate types of protein, ratio of [indo-1]/[protein], and pH.  相似文献   

10.
本文观察到易卒中自发性高血压大鼠接受高钙(3%)饮食6周后抑制了血压上升,胞浆游离钙浓度降低和血浆钙升高,细胞内pH也产生改变,接近正常对照的WKY大鼠。本文对细胞内pH,Na+-H+交换,胞浆游离钙浓度与血压的关系进行了讨论。  相似文献   

11.
We investigated the question of whether inhibition of the Na(+)/H(+) exchanger (NHE) during ischemia is protective due to reduction of cytosolic Ca(2+) accumulation or enhanced acidosis in cardiomyocytes. Additionally, the role of the Na(+)-HCO(3)(-) symporter (NBS) was investigated. Adult rat cardiomyocytes were exposed to simulated ischemia and reoxygenation. Cytosolic pH [2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)], Ca(2+) (fura 2), Na(+) [sodium-binding benzolfuran isophthatlate (SBFI)], and cell length were measured. NHE was inhibited with 3 micromol/l HOE 642 or 1 micromol/l 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and NBS was inhibited with HEPES buffer. During anoxia in bicarbonate buffer, cells developed acidosis and intracellular Na and Ca (Na(i) and Ca(i), respectively) overload. During reoxygenation cells underwent hypercontracture (44.0 +/- 4.1% of the preanoxic length). During anoxia in bicarbonate buffer, inhibition of NHE had no effect on changes in intracellular pH (pH(i)), Na(i), and Ca(i), but it significantly reduced the reoxygenation-induced hypercontracture (HOE: 61.0 +/- 1.4%, EIPA: 68.2 +/- 1.8%). The sole inhibition of NBS during anoxia was not protective. We conclude that inhibition of NHE during anoxia protects cardiomyocytes against reoxygenation injury independently of cytosolic acidification and Ca(i) overload.  相似文献   

12.
Isolated cardiomyocytes from adult rats were incubated in anoxic bicarbonate-buffered media at extracellular pH (pH(o)) 6.4 until a cytosolic Ca(2+) overload and intracellular pH (pH(i)) of 6.4 were reached. On reoxygenation, the pH of the medium was changed to 7.4 to activate the Na(+)/H(+)exchanger (NHE) and the Na(+)-HCO(-)(3) symporter (NBS). The reoxygenation was performed in the absence or presence of the NHE inhibitor HOE-642 (3 micromol/l) and/or the NBS inhibitor DIDS (0.5 mmol/l), as in bicarbonate-free media. In reoxygenated control cells pH(i) rapidly recovered to the preanoxic level, and a burst of spontaneous oscillations of cytosolic Ca(2+) occurred, accompanied by the development of hypercontracture. When NBS and NHE were simultaneously inhibited during reoxygenation, pH(i) recovery was prevented, Ca(2+) oscillations were attenuated, and hypercontracture was abolished. Sole inhibition of NBS or NHE showed no protection against hypercontracture. In the absence of cytosolic acidosis, HOE-642 or DIDS did not prevent hypercontracture induced by Ca(2+) overload. The results demonstrate that simultaneous inhibition of NHE and NBS is needed to protect myocardial cells against reoxygenation-induced hypercontracture.  相似文献   

13.
Although Na+/H+ exchange (NHE) has been implicated in myocardial reperfusion injury, participation of coronary microvascular endothelial cells (CMECs) in this pathogenesis has been poorly understood. NHE-induced intracellular Ca2+ concentration ([Ca2+]i) overload in CMECs may increase the synthesis of intercellular adhesion molecules (ICAM), which is potentially involved in myocardial reperfusion injury. The present study tested the hypothesis that NHE plays a crucial role in [Ca2+]i overload and ICAM-1 synthesis in CMECs. Primary cultures of CMECs isolated from adult rat hearts were subjected to acidic hypoxia for 30 min followed by reoxygenation. Two structurally distinct NHE inhibitors, cariporide and 5-(N-N-dimethyl)-amiloride (DMA), had no significant effect on the acidic hypoxia-induced decrease in intracellular pH (pH(i)) of CMECs but significantly retarded pH(i) recovery after reoxygenation. These NHE inhibitors abolished the hypoxia- and reoxygenation-induced increase in [Ca2+]i. Expression of ICAM-1 mRNA was markedly increased in the vehicle-treated CMECs 3 h after reoxygenation, and this was significantly inhibited by treatment with cariporide, DMA, or Ca2+-free buffer. In addition, enhanced ICAM-I protein expression on the cell surface of CMECs 8 h after reoxygenation was attenuated by treatment with cariporide, DMA, or Ca2+-free buffer. These results suggest that NHE plays a crucial role in the rise of [Ca2+]i and ICAM-1 expression during acidic hypoxia/reoxygenation in CMECs. We propose that inhibition of ICAM-1 expression in CMECs may represent a novel mechanism of action of NHE inhibitors against ischemia-reperfusion injury.  相似文献   

14.
Several experimental studies have shown that acidosis impairs neurotransmitter uptake processes. The purpose of this study was to determine the mechanism underlying acidosis-induced alterations of the high-affinity dopamine (DA) uptake in rat striatal synaptosomes and slices. Acidosis (pH 5.5) performed either by lactic acid or phosphoric acid induced a decrease in the high-affinity DA uptake in the two striatal models, slices being lesser affected than synaptosomes. Addition of the acid prior to uptake measurement led to a strong reduction of the DA uptake velocity. This early inhibitory effect was completely reversed when acid was removed from the medium by washings. Conversely, when slices and synaptosomes were pre-incubated for different times with each acid, DA uptake remained inhibited in spite of washings. This later inhibition was accompanied by the production of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and was partially prevented by the antioxidant Trolox. Taken together, these results suggest that acidosis, in a degree encountered during ischemia, alters the high-affinity DA uptake by at least two ways: an early and direct effect of H(+) ions on the DA transporters, and subsequently an inhibition partially mediated by free radical damage.  相似文献   

15.
Acidosis (pH 6.0) led to significant decrease in high—affinity choline uptake by rat brain synaptosomes. The effects persisted following pH readjustment (7.4) of the incubation medium, consisting of decrease in both Km and Vmax of the affinity system. pH readjustment coincided with synaptosomal leakage of lactate dehydrogenase (LDH) and with instability of the synaptosomal suspension as evidenced from turbidity modifications of the preparation. LDH leakage occurred when acidosis was performed with lactic acid, whereas it was not seen following H3PO4 acidosis, probably because of the rapid diffusion of the protonated form of lactic acid across membranes. Turbidity modifications of the suspension were prevented by EDTA. The present results indicate that acidosis to pH level comparable to what is observed in brain ischemia is deleterious for cholinergic mechanisms. They also suggest that alkaline pH shifts that occur after blood reperfusion of ischemic brain tissue might be critical for the survival of cells.To whom to address reprint requests.  相似文献   

16.
Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase‐2 (MMP‐2). It has been shown that simultaneous inhibition of MMP‐2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML‐7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co‐administration of nitric oxide synthase (NOS) inhibitor (1400W or L‐NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia–reoxygenation (H‐R)‐induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP‐2 by Doxy (25–100 μM), MLCK by ML‐7 (0.5–5 μM) and NOS by L‐NAME (25–100 μM) or 1400W (25–100 μM) protected myocyte contractility after H‐R in a concentration‐dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H‐R at the level of highest single‐drug concentration. The combination of subthreshold concentrations of NOS, MMP‐2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP‐2. The observed protection with addition of L‐NAME or 1400W was better than previously reported combination of ML‐7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility.  相似文献   

17.
急性低氧对体外培养乳鼠心肌细胞肌红蛋白的影响   总被引:11,自引:0,他引:11  
柴旦  周兆年 《生理学报》1997,49(5):497-503
本实验观察了低氧、复氧时培养的乳鼠心肌细胞肌红蛋白(Mb)、cAMP、心肌收缩频率的变化以及磷酸二酯酶抑制剂茶碱和抑制肌质网上钙释放的普鲁卡因地低氧下心肌细胞Mb表达和心肌细胞收缩频率的影响。结果表明,随低氧时间的延长Mb增加,cAMP和心肌收缩下降,Mb、cAMP和心肌细胞收缩频率经复氧可以得到恢复。普鲁卡因使低氧时心肌细胞的收缩频率更漫和Mb的表达减弱;茶碱使低氧下心肌细胞的收缩频率和Mb的表  相似文献   

18.
Vasoconstriction: a novel activity for low density lipoprotein   总被引:3,自引:0,他引:3  
Low density lipoprotein plays an important role in the pathogenesis of atherosclerosis. Cumulative addition of 1-30 micrograms/ml of LDL from normolipidemic subjects produced a dose-dependent increase in contractile tension of thoracic aortic rings from rats. The maximal LDL-induced contractile response was approximately 30% of that induced by 1 microM norepinephrine. Similar concentrations of LDL induced a dose-dependent transient increase of the concentration of intracellular free calcium, and a biphasic change of the intracellular pH in cultured rat vascular smooth muscle cells. We conclude that low density lipoprotein occurring for example in the extravascular fluid can mediate vasoconstriction by changes in cytosolic calcium and intracellular pH.  相似文献   

19.
20.
离体大鼠心肌细胞钠超负荷与缺氧—复氧损伤   总被引:6,自引:0,他引:6  
李兆萍  唐朝枢 《生理学报》1989,41(3):304-307
本工作在离体成年大鼠心肌细胞缺氧-复氧模型上,观察到细胞无氧孵育时加入Na~ -K~ ATP酶抑制剂哇巴因,增加细胞内钠离子浓度,复氧孵育后造成了更严重的细胞损伤及钙超负荷,缺氧期末细胞内钠离子浓度与复氧后钙超负荷的程度呈显著正相关。复氧期给予Na~ -Ca~(2 )交换抑制剂Mn~(2 ),明显减轻了细胞的缺氧-复氧损伤,Mn~(2 )还显著抑制了无钠孵育引起的细胞损伤。结果提示:缺氧期细胞内钠超负荷是复氧时细胞内钙超负荷发生的条件,Na~ -Ca~(2 )交换是Ca~(2 )进入细胞的重要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号