首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Real-time traces of CO(2) release of pseudergates of the dampwood termite, Zootermopsis nevadensis (Hagen) were obtained using flow-through respirometry. Traces were made at each of six temperatures, between 10 and 35 degrees C. Termites released CO(2) in a cyclic pattern at each of the six temperatures. CO(2) release rate (as V(CO(2)) in ml h(-1)) increased significantly with temperature and body mass. Rate of change in V(CO(2)) with temperature (or Q(10)) was 2.11. Degree of cycling in CO(2) traces was estimable using the coefficient of variability. Coefficient of variability for both acyclic and cyclic traces declined exponentially with increasing temperature.  相似文献   

2.
This study presents the first physiological information for a member of the wingless Mantophasmatodea, or Heelwalkers. This species shows cyclic gas exchange with no evidence of a Flutter period (more typical of discontinuous gas exchange in insects) and no indication that the spiracles are fully occluded during quiescent metabolism. Standard metabolic rate at 20 degrees C was 21.32+/-2.73 microl CO(2)h(-1) (mean+/-S.E.), with a Q(10) (10-25 degrees C) of 1.7. Increases in V()CO(2) associated with variation in mass and with trial temperature were modulated by an increase in burst period volume and a decline in cycle frequency. Total water loss rate, determined by infrared gas analysis, was 0.876+/-0.08 mg H(2)Oh(-1) (range 0.602-1.577, n=11) whilst cuticular water loss rate, estimated by linear regression of total water loss rate and metabolic rate, was 0.618+/-0.09 mg H(2)Oh(-1) (range 0.341-1.363, n=11). Respiratory water loss rate was therefore no more than 29% of the total rate of water loss. Both total water loss rate and estimated cuticular water loss rate were significantly repeatable, with intraclass correlation coefficients of 0.745 and 0.553, respectively.  相似文献   

3.
Despite much focus on species responses to environmental variation through space and time, many higher taxa and geographic areas remain poorly studied. We report the effects of temperature acclimation on thermal tolerance, desiccation rate and metabolic rate for adult Chirodica chalcoptera (Coleoptera: Chrysomelidae) collected from Protea nerifolia inflorescences in the Fynbos Biome in South Africa. After 7 days of acclimation at 12, 19 and 25 degrees C, critical thermal maxima (mean+/-s.e.: 41.8+/-0.2 degrees C in field-fresh beetles) showed less response (<1 degrees C change) to temperature acclimation than did the onset of the critical thermal minima (0.1+/-0.2, 1.0+/-0.2 and 2.3+/-0.2 degrees C, respectively). Freezing was lethal in C. chalcoptera (field-fresh SCP -14.6 degrees C) and these beetles also showed pre-freeze mortality. Survival of 2 h at -10.1 degrees C increased from 20% to 76% after a 2 h pre-exposure to -2 degrees C, indicating rapid cold hardening. Metabolic rate, measured at 25 degrees C and adjusted by ANCOVA for mass variation, did not differ between males and females (2.772+/-0.471 and 2.517+/-0.560 ml CO2 h(-1), respectively), but was higher in 25 degrees C-acclimated beetles relative to the field-fresh and 12 degrees C-acclimated beetles. Body water content and desiccation rate did not differ between males and females and did not respond significantly to acclimation. We place these data in the context of measured inflorescence and ambient temperatures, and predict that climate change for the region could have effects on this species, in turn possibly affecting local ecosystem functioning.  相似文献   

4.
The effects of temperature and pH/CO(2) were examined in isolated brainstem preparations from adult North American bullfrogs (Rana catesbeiana). These experiments were undertaken to determine the effects of temperature on fictive breathing, central pH/CO(2) chemoreception, and to examine potential alphastat regulation of respiration in vitro. Adult bullfrog brainstem preparations were isolated, superfused with an artificial cerebrospinal fluid (aCSF) and respiratory-related neural activity was recorded from cranial nerves V, X and XII. In Series I experiments (N=8), brainstem preparations were superfused with aCSF equilibrated with 2% CO(2) at temperatures ranging from 10 to 30 degrees C. Neural activity was present in all preparations in the temperature range of 15-25 degrees C, but was absent in most preparations when aCSF was at 10 or 30 degrees C. The absence of fictive breathing at high (30 degrees C) temperatures was transient since fictive breathing could be restored upon returning the preparation to 20 degrees C. In Series II experiments (N=10), preparations were superfused with aCSF equilibrated with 0%, 2% and 5% CO(2) at temperatures of 15, 20 and 25 degrees C. Fictive breathing frequency (f(R)) was significantly dependent upon aCSF pH at all three temperatures, with slopes ranging from -0.82 min(-1) pH unit(-1) (15 degrees C) to -3.3 min(-1) pH unit(-1) (20 degrees C). There was a significant difference in these slopes (P<0.02), indicating that central chemoreceptor sensitivity increased over this temperature range. Fictive breathing frequency was significantly dependent upon the calculated alpha-imidazole (alpha(Im)) ionization (P<0.05), consistent with the alphastat hypothesis for the effects of temperature on the regulation of ventilation. However, most of the variation in f(R) was not explained by alpha(Im) (R(2)=0.05), suggesting that other factors account for the regulation of fictive breathing in this preparation. The results indicate that the in vitro brainstem preparation of adult bullfrogs has a limited temperature range (15-25 degrees C) over which fictive breathing is consistently active. Although there is a close correspondence of ventilation in vitro and in vivo at low temperatures, these data suggest that, as temperature increases, changes in ventilation in the intact animal are likely to be more dependent upon peripheral feedback which assumes a greater integrative role with respect to chemoreceptor drive, respiratory frequency and tidal volume.  相似文献   

5.
The discontinuous gas exchange cycle (DGC), the cyclic release of CO(2) and uptake of O(2), were investigated in workers and female and male alates of the red imported fire ant, Solenopsis invicta Buren, using real-time CO(2) emission measurement by flow-through respirometry. All S. invicta castes displayed discontinuous emission of CO(2) in the temperature range of 15-25 degrees C, but only male alates and workers exhibited a DGC at 30 degrees C. The closed (C) and flutter (F) periods of the DGC were distinguishable in alates of both sexes at the lowest temperature, but not clearly differentiated in females at temperatures above 15 degrees C, in males above 20 degrees C, or workers at any temperature. DGC frequency increased for all castes as temperature increased, ranging from a low of 0.9+/-0.05 mHz (male alates at 15 degrees C) to 18+/-0.79 mHz (workers at 30 degrees C). O period (or burst) volumes of all castes decreased as temperature increased, and increased with body mass - this mass effect was most pronounced at lower temperatures. Q(10) values for DGC frequency (4.27, 5.81, and 5.62 for workers, female and male alates, respectively) were high compared with Q(10)'s for standard Vdot;(CO(2)). Differences in the salient characteristics of the DGC between castes are presented and discussed, and S. invicta DGC patterns are compared to known values for some other ant species.  相似文献   

6.
Respiratory metabolism of different developmental stages (larvae, pseudergates, nymphs, soldiers, neotenic reproductives; 0.6-4.5 mg body mass) of Prorhinotermes simplex was individually monitored by scanning respirographic method sensitive to subnanoliter amounts of O(2) consumption or CO(2) output per minute. Specimens exposed to dry air after removal from the colony performed enormously large, discontinuous bursts of CO(2) lasting usually 2 min. The volume of CO(2) produced during the burst often surpassed the volume of the whole body and it was 10- to 20-fold in excess of the air-filled endogenous tracheal volume. The initial velocity of CO(2) production during the burst was more than 90-fold faster in comparison to O(2) consumption. In the presence of enough moisture within the respiratory vessel, the termites breathed continuously without any larger outburst of CO(2). This fact fully corroborates validity of the so-called water retention theory in discontinuous CO(2) release. The highest rates of O(2) consumption were found in the second instar larvae (0.9 mg, 1000-2000 microl O(2)/g/h), the soldier caste was intermediate (700 microl O(2)/g/h) while pseudergates and neotenic reproductives consumed between 300 and 600 microl O(2)/g/h, at 25 degrees C. All developmental stages feeding on a cellulose diet had CO(2)/O(2) values (RQ) over 1 (1.2-1.4, i.e. carbohydrate metabolism), pigmented soldiers fed by the workers had RQ around 0.75 (predominating lipid or protein metabolism). The unusually large, sudden eruptions of CO(2) in specimens exposed to dry air allow us to make the following conclusions: (1) the bursts were due to special chemical processes, such as by enzymatic hydration of carbonic acid by carbonic anhydrase and; (2) the bulk of chemically evolved gaseous CO(2) escaped from the body by a mass flow supported by active ventilation, not by a passive diffusion. These results demonstrated that the periodic emissions of CO(2) and the associated homeostatic regulation of the respiratory acidaemia were under perfect physiological control. The termites could thus actively select the type of CO(2) release best suited to the extant environmental or internal physiological conditions, i.e. from a completely continuous respiration to occasionally cyclic or completely discontinuous CO(2) release.  相似文献   

7.
In this study, reduced levels of ventilation were applied to small clusters of bees under controlled conditions to determine whether lowered ventilation rates and the resulting increased levels of CO2 could increase the mortality rates of varroa. Two experiments were performed at two different temperatures (10 degrees C and 25 degrees C). Both experiments compared varroa mortality among high (360 liters/h), medium (42.5 liters/h), and low (14 liters/h) rates of ventilation. The clusters of bees (approximately 300 worker bees) in bioassay cages with 40 introduced varroa mites were placed into self-contained glass chambers and were randomly assigned to one of the three ventilation treatments within incubators set at either of the two temperatures. Bee and varroa mortality and the levels of CO2 concentration were measured in each of the experimental chambers. In both experiments, CO2 levels within the chamber increased, with a decrease in ventilation with CO2 reaching a maximum of 1.2 +/- 0.45% at 10 degrees C and 2.13 +/- 0.2% at 25 degrees C under low ventilation. At high ventilation rates, CO2 concentration in chamber air was similar at 10 degrees C (1.1 +/- 1.5%) and 25 degrees C (1.9 +/- 1.1%). Both humidity and CO2 concentration were higher at 25 degrees C than at 10 degrees C. Bee mortality was similar within all ventilation rate treatments at either 10 degrees C (11.5 +/- 2.7-19.3 +/- 3.8%) or 25 degrees C (15.2 +/- 1.9-20.7 +/- 3.5%). At 10 degrees C, varroa mortality (percentage dead) was greatest in the high ventilation treatment (12.2 +/- 2.1%), but only slightly higher than under low (3.7 +/- 1.7%) and medium ventilation (4.9 +/- 1.6%). At 25 degrees C, varroa mortality was greatest under low ventilation at 46.12 +/- 7.7% and significantly greater than at either medium (29.7 +/- 7.4%) or low ventilation (9.5 +/- 1.6.1%). This study demonstrates that at 25 degrees C, restricted ventilation, resulting in high levels of CO2 in the surrounding environment of small clusters of honey bees, has the potential to substantially increase varroa mortality.  相似文献   

8.
Marine bivalves harbour a diversity of trematode parasites affecting population and community dynamics of their hosts. Although ecologically and economically important, factors influencing transmission between first (snail) and second (bivalve) intermediate hosts have rarely been studied in marine systems. In laboratory experiments, the effect of temperature (10, 15, 20, 25 degrees C) was investigated on (1) emergence from snails, (2) survival outside hosts and (3) infectivity in second intermediate hosts of cercariae of the trematode Renicola roscovita (Digenea: Renicolidae), a major parasite in North Sea bivalves. Emergence of cercariae peaked at 20 degrees C (2609 +/- 478 cercariae snail(-1) 120 h(-1)) and was considerably lower at 10 degrees C (80 +/- 79), 15 degrees C (747 +/- 384) and 25 degrees C (1141 +/- 334). Survival time decreased with increasing temperature, resulting in 50% mortality of the cercariae after 32.8 +/- 0.6 h (10 degrees C), 26.8 +/- 0.8 h (15 degrees C), 20.2 +/- 0.5 h (20 degrees C) and 16.6 +/- 0.3 h (25 degrees C ). Infectivity of R. roscovita cercariae in cockles Cerastoderma edule increased with increasing temperature and was highest at 25 degrees C (42.6 +/- 3.9%). However, mesocosm experiments with infected snails and cockle hosts in small aquaria, integrating cercarial emergence, survival and infectivity, showed highest infection of cockles at 20 degrees C (415 +/- 115 metacercariae host(-1)), indicating 20 degrees C to be the optimum temperature for transmission of this species. A field experiment showed metacercariae of R. roscovita to appear in C. edule with rising water temperature in April; highest infection rates were in August, when the water temperature reached 20 degrees C. Since another trematode species (Himasthla elongata; Digenea: Echinostomatidae) occurring at the experimental site showed a similar temporal pattern, trematode transmission to second intermediate bivalve hosts may peak during especially warm (> or = 20 degrees C) summers in the variable climate regime of the North Sea.  相似文献   

9.
The molecular organization of cholesterol in 1,2-didocosahexaenoylphosphatidylcholine (22:6-22:6PC) and 1-stearoyl-2-docosahexaenoylphosphatidylcholine (18:0-22:6PC) bilayers was investigated. Using low- and wide-angle X-ray diffraction (XRD), we determined that the solubility of the sterol at 20 degrees C was 11 +/- 3 mol % in 22:6-22:6PC vs 55 +/- 3 mol % in 18:0-22:6PC bilayers. Solubility in the dipolyunsaturated membrane rose to 17 +/- 3 mol % at 40 degrees C, while in the saturated-polyunsaturated membrane there was no change within experimental uncertainty. We compared the molecular orientation of [3alpha-(2)H(1)]cholesterol incorporated into 22:6-22:6PC bilayers to its solubility limit and into 18:0-22:6PC bilayers to a comparable concentration (10 mol %) in solid-state (2)H NMR experiments. The sterol possessed a tilt angle alpha(0) = 24 degrees +/- 1 degrees in 22:6-22:6PC that was independent of temperature over a range from 20 to 40 degrees C. In contrast, the value was alpha(0) = 21 degrees +/- 1 degrees in 18:0-22:6 bilayers at 20 degrees C and increased to alpha(0) = 24 degrees +/- 1 degrees at 40 degrees C. We attribute the low solubility of cholesterol in 22:6-22:6PC membranes to steric incompatibility between the rigid steroid moiety and the highly disordered docosahexaenoic acid (DHA) chain, which has the potential to promote lateral heterogeneity within DHA-rich membranes. Considering 22:6-22:6PC to be the most unsaturated phospholipid found in vivo, this model membrane study provides a point of reference for elucidating the role of sterol-lipid interactions in controlling local compositional organization. Our results form the basis for a model that is consistent with cholesterol's ability to modulate the activity of certain neural transmembrane proteins.  相似文献   

10.
C(4)-type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters - the maximum catalytic rate of the enzyme ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (V(pmax)) and the maximum electron transport rate (J(max)) - were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (A(n)) versus intercellular air space CO(2) concentrations (C(i)), and A(n) versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15-40 degrees C. Values of V(cmax), V(pmax) and J(max) were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of V(pmax) and J(max) obtained at 25 degrees C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of V(cmax), V(pmax) and J(max) are then proposed. These parameters should be further tested with C(4) plants for validation. Other model key parameters such as the mesophyll cell conductance to CO(2) (g(i)), the bundle sheath cells conductance to CO(2) (g(bs)) and Michaelis-Menten constants for CO(2) and O(2) (K(c), K(p) and K(o)) also vary with temperature and should be better parameterized.  相似文献   

11.
The analysis and interpretation of A/C(i) curves (net CO(2) assimilation rate, A, versus calculated substomatal CO(2) concentration, C(i)) is dependent upon a number of underlying assumptions. The influence of the C(i) value at which the A/C(i) curve switches between the Rubisco- and electron transport-limited portions of the curve was examined on A/C(i) curve parameter estimates, as well as the effect of mesophyll CO(2) conductance (g(m)) values on estimates of the maximum rate of Rubisco-mediated carboxylation (V(cmax)). Based on an analysis using 19 woody species from the Pacific Northwest, significant variation occurred in the C(i) value where the Rubisco- and electron transport-limited portions of the curve intersect (C(i_t)), ranging from 20 Pa to 152 Pa and averaging c. 71 Pa and 37 Pa for conifer and broadleaf species, respectively. Significant effects on estimated A/C(i) parameters (e.g. V(cmax)) may arise when preliminary estimates of C(i_t), necessary for the multiple regression analyses, are set either too high or too low. However, when the appropriate threshold is used, a significant relationship between A/C(i) and chlorophyll fluorescence estimates of carboxylation is achieved. The use of the V(cmax) parameter to describe accurately the Rubisco activity from the A/C(i) curve analysis is also dependent upon the assumption that C(i) is approximately equal to chloroplast CO(2) concentrations (C(c)). If leaf mesophyll conductance is low, C(c) will be much lower than C(i) and will result in an underestimation of V(cmax) from A/C(i) curves. A large range of mesophyll conductance (g(m)) values was observed across the 19 species (0.005+/-0.002 to 0.189+/-0.011 mol m(-2) s(-1) for Tsuga heterophylla and Quercus garryana, respectively) and, on average, g(m) was 1.9 times lower for the conifer species (0.058+/-0.017 mol m(-2) s(-1) for conifers versus 0.112+/-0.020 mol m(-2) s(-1) for broadleaves). When this mesophyll limitation was accounted for in V(cmax) estimates, considerable variation still existed between species, but the difference in V(cmax) between conifer and broadleaf species was reduced from c. 11 micromol m(-2) s(-1) to 4 micromol m(-2) s(-1). For example, A/C(i) curve estimates of V(cmax) were 31.2+/-6.2 and 42.2+/-4.4 micromol m(-2) s(-1), and A/C(c) curve estimates were 41.2+/-7.1 micromol m(-2) s(-1) and 45.0+/-4.8 micromol m(-2) s(-1), for the conifer and broadleaf species, respectively.  相似文献   

12.
The capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to consume RuBP is a major limitation on the rate of net CO(2) assimilation (A) in C(3) and C(4) plants. The pattern of Rubisco limitation differs between the two photosynthetic types, as shown by comparisons of temperature and CO(2) responses of A and Rubisco activity from C(3) and C(4) species. In C(3) species, Rubisco capacity is the primary limitation on A at light saturation and CO(2) concentrations below the current atmospheric value of 37 Pa, particularly near the temperature optimum. Below 20 degrees C, C(3) photosynthesis at 37 and 68 Pa is often limited by the capacity to regenerate phosphate for photophosphorylation. In C(4) plants, the Rubisco capacity is equivalent to A below 18 degrees C, but exceeds the photosynthetic capacity above 25 degrees C, indicating that Rubisco is an important limitation at cool but not warm temperatures. A comparison of the catalytic efficiency of Rubisco (k(cat) in mol CO(2) mol(-1) Rubisco active sites s(-1)) from 17 C(3) and C(4) plants showed that Rubisco from C(4) species, and C(3) species originating in cool environments, had higher k(cat) than Rubisco from C(3) species originating in warm environments. This indicates that Rubisco evolved to improve performance in the environment that plants normally experience. In C(4) plants, and C(3) species from cool environments, Rubisco often operates near CO(2) saturation, so that increases in k(cat) would enhance A. In warm-habitat C(4) species, Rubisco often operates at CO(2) concentrations below the K(m) for CO(2). Because k(cat) and K(m) vary proportionally, the low k(cat) indicates that Rubisco has been modified in a manner that reduces K(m) and thus increases the affinity for CO(2) in C(3) species from warm climates.  相似文献   

13.
ORIUS LAEVIGATUS: (Fieber) and O. albidipennis (Reuter) play an important role in the control of Frankliniella occidentalis (Pergande) in crops and natural vegetation in the Mediterranean area. The biological parameters of the two anthocorids were studied and modelled in relation to temperature to optimize their use in thrips control programmes. Development times and reproductive parameters of O. laevigatus and O. albidipennis were determined at 20, 25, 30 and 35 degrees C. Pre-imaginal development times ranged from 34.6 and 37.2 days at 20 degrees C to 12.3 and 10.2 days at 35 degrees C in O. laevigatus and O. albidipennis, respectively. The lower thermal development threshold was significantly higher for O. albidipennis (14.2 +/- 0.9 degrees C) than for O. laevigatus (11.3 +/- 0.7 degrees C). No significant differences in fecundities between the two anthocorids were observed at 20, 25 and 30 degrees C. At 35 degrees C, O. albidipennis had a significantly higher fecundity than O. laevigatus. Non-linear models were used to explain reproduction and female survivorship in relation to temperature. The upper reproductive thresholds were estimated at 40.9 +/- 0.3 and 35.5 +/- 0.1 degrees C for O. albidipennis and O. laevigatus, respectively. The different optimum temperatures may explain, at least in part, the different distributions of the two species in the Palaeartic region and their population dynamics in greenhouses and natural vegetation in the south of Spain. The estimation of rm as a function of temperature showed high variability between years. Three release rates of 0.75-0.25 Orius per plant are recommended from early March to mid May to deal with thrips outbreaks in pepper crops.  相似文献   

14.
1. Resting metabolic rate and body temperature in function of ambient temperature were determined for two species of Ctenomys. 2. Oxygen consumption was lowest between 25 and 30 degrees C and was 0.946 +/- 0.030 and 0.968 +/- 0.022 in Ctenomys talarum (from Mar de Cobo and Necochea, respectively). Resting metabolic rate was 0.343 +/- 0.053 at 30 C in C. australis. 3. Mean rectal temperature at thermoneutrality was 36.1 +/- 0.13 and 37.3 +/- 0.17 in C. talarum and C. australis, respectively. 4. Limited thermoregulation occurred in C. talarum down to 20 degrees C but C. australis maintained body temperature down to 10 degrees C. 5. Both species of tuco-tucos became hyperthermic at ambient temperatures above thermoneutrality.  相似文献   

15.
The Shibata shift was analyzed in flash irradiated wheat (Triticum aestivum, L., cult. MV17) leaf homogenates in the pressure range of 0.1 to 500 MPa, at temperatures of 20, 30 and 40 degrees C. The kinetics of the blue shift (called Shibata shift in case of intact leaves) was followed by repeated recording of fluorescence emission spectra after phototransformation. At 20 degrees C, above 100 MPa, the blue shift slowed down remarkably. Two components of the blue shift could be distinguished, one was pressure-dependent and the other was almost pressure-independent. The pressure-independent component can be associated with minor conformational changes of the NADPH:protochlorophyllide oxidoreductase (POR) enzyme, followed by molecular movements of the newly formed chlorophyllide molecules. The calculated activation volume of the pressure-dependent component was 43+/-11 cm(3) mol(-1) at 20 degrees C. This value reflects major molecular reorganizations in the lipid system of the membrane and in the chlorophyllide-protein complexes, and corresponds to changes of the tertiary structure of proteins which can proceed directly or indirectly via structural changes of the membrane lipids. The process was inhibited by 300 and 400 MPa at 30 and 40 degrees C, respectively. The activation volume reduced to 35+/-1.5 cm(3) mol(-1) at 40 degrees C. The decrease of the activation volume with increasing temperature indicates that the blue shift requires loosened lipid structures. The activation energy of the blue shift (measured between 10 and 40 degrees C at atmospheric pressure) was 100+/-20 kJ/mol, indicating that the structural change involves rearrangement of strong molecular interactions.  相似文献   

16.
The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme facilitates the release of sugar phosphate inhibitors from Rubisco catalytic sites thereby influencing carbamylation. T(1) progeny of transgenic Flaveria bidentis (a C(4) dicot) containing genetically reduced levels of Rubisco activase were used to explore the role of the enzyme in C(4) photosynthesis at high temperature. A range of T(1) progeny was screened at 25 degrees C and 40 degrees C for Rubisco activase content, photosynthetic rate, Rubisco carbamylation, and photosynthetic metabolite pools. The small isoform of F. bidentis activase was expressed and purified from E. coli and used to quantify leaf activase content. In wild-type F. bidentis, the activase monomer content was 10.6+/-0.8 micromol m(-2) (447+/-36 mg m(-2)) compared to a Rubisco site content of 14.2+/-0.8 micromol m(-2). CO(2) assimilation rates and Rubisco carbamylation declined at both 25 degrees C and 40 degrees C when the Rubisco activase content dropped below 3 mumol m(-2) (125 mg m(-2)), with the status of Rubisco carbamylation at an activase content greater than this threshold value being 44+/-5% at 40 degrees C compared to 81+/-2% at 25 degrees C. When the CO(2) assimilation rate was reduced, ribulose-1,5-bisphosphate and aspartate pools increased whereas 3-phosphoglycerate and phosphoenol pyruvate levels decreased, demonstrating an interconnectivity of the C(3) and C(4) metabolites pools. It is concluded that during short-term treatment at 40 degrees C, Rubisco activase content is not the only factor modulating Rubisco carbamylation during C(4) photosynthesis.  相似文献   

17.
Three developmental stages (pupae, early pharate and late pharate adults) of Callosobruchus subinnotatus (Pic.) were investigated for their tolerance or susceptibility to four modified atmospheres. Two of these atmospheres were hypercarbic and two were hypoxic. The hypercarbic atmospheres were found to cause mortality earlier than hypoxic atmospheres. Late pharate adults died earlier than pupae or early pharate adults. Late pharate adults that survived the exposure took a longer time to eclose than the pupae or early pharate adult.Using high resolution microrespirometric techniques, it was possible to record the oxygen consumption rate and CO(2) output of different developmental stages in air. The metabolic rate was determined manometrically as the oxygen uptake rate at an ambient temperature of 25 degrees C. The oxygen uptake rate differed significantly between groups of 20 individuals of different stages (p<0.01; t-test). The lowest rate of oxygen uptake (510.6+/-52.2 &mgr;l g(-1) h(-1)) was recorded in pupae. Higher oxygen uptake rates were found in early pharate adults (668.4+/-45.6 &mgr;l g(-1) h(-1)) and late pharate adults (1171.2+/-45.0 &mgr;l g(-1) h(-1)), and adult beetles (1310.4+/-53.4 &mgr;l g(-1) h(-1)). The patterns of CO(2) release were similar to those of oxygen uptake. CO(2) release was highest in eclosed adults and late pharate adults followed by early pharate adults, and lowest in pupae. The mode of CO(2) release ranged from continuous CO(2) release in pupae to discontinuous CO(2) release in late pharate and eclosed adults. Thus, high metabolic rates, and perhaps, in conjunction with discontinuous CO(2) of late pharate adults are responsible for their higher susceptibility to modified atmospheres than pupae and early pharate adults.  相似文献   

18.
High-pressure stopped-flow spectrometry at low temperatures   总被引:1,自引:0,他引:1  
A stopped-flow instrument operating over temperature and pressure ranges of +30 to -20 degrees C and 10(-3) to 2 kbar , respectively, is described. The system has been designed so that it can be easily interfaced with many commercially available spectrophotometers of fast response time, with the aid of quartz fiber optics. The materials used for the construction are inert, metal free and the apparatus has proven to be leak free at temperatures as low as -20 degrees C under a pressure of 2 kbar . The performance of the instrument was tested by measuring the rate of reduction of cytochrome c with sodium dithionite and the 2,6-dichloroindophenol/ascorbate reaction. The dead time of the system has been evaluated to be 20, 50, and congruent to 100 ms in water at 20 degrees C, in 40% ethylene glycol/water, and at 20 degrees C and -15 degrees C, respectively. These values are rather pressure independent up to 2 kbar . Application of the bomb was demonstrated using the cytochrome c peroxidase/ethyl peroxide reaction. This process occurred in two phases and an increase in pressure decreased the rates of reactions indicating two positive volumes of activation (delta V not equal to app (fast) = 9.2 +/- 1.5 ml X mol-1; delta V not equal to app (slow) = 14 +/- 1.5 ml X mol-1, temperature 2 degrees C). The data suggest that the fast reaction could involve a hydrophobic bond, whereas the slow process could be associated with a stereochemical change of the protein. The problem of temperature equilibrium for high-pressure experiments is also discussed.  相似文献   

19.
This study was undertaken to investigate whether part of the ammonia formed during muscular exercise was excreted with the sweat. Male medical students volunteered for the experiment. They exercised 30 min on a bicycle ergometer at 80 and 40% of the predetermined maximal O2 uptake (VO2max). Exercise at 80% VO2max was performed twice, at room temperature (20 degrees C) and in a cold room (0 degrees C), whereas exercise at 40% was performed only at room temperature (20 degrees C). Blood was collected from the antecubital vein immediately before and after exercise. Sweat was collected from the hypogastric region by use of gauze pads. It was shown that the plasma ammonia level was elevated after exercise at 80% VO2max and remained stable after exercise at 40% VO2max. The volume of sweat produced during exercise at 80% VO2max at 20 degrees C was 428 +/- 138 ml and at 0 degrees C 245 +/- 86 ml and during exercise at 40% VO2max was 183 +/- 69 ml. The ammonia concentration in the sweat after exercise at 80% VO2max at 20 degrees C was 7,140 mumol/l and at 0 degrees C 11,816 mumol/l. After exercise at 40% VO2max, it was 2,076 mumol/l. The total ammonia lost through the sweat during exercise at 80% VO2max was similar at both temperatures, despite the difference in the sweat volume (at 20 degrees C, 3,360 +/- 2,080 mumol; at 0 degrees C, 3,310 +/- 1,250 mumol). During exercise at 40% VO2max, it was 350 +/- 230 mumol. These results show that part of ammonia formed during exercise is lost with sweat. The amount lost increases with increased work rate and the plasma ammonia concentration.  相似文献   

20.
The discontinuous gas exchange cycle (DGC) was described in the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae) for the first time. Also, the effect of the DGC on water loss was investigated. The CO(2) emission pattern in both insecticide resistant and susceptible B. germanica varied with temperature. At 10, 15, and 20 degrees C the pattern was discontinuous. Cycle frequency increased at 25 and 30 degrees C, and at 35 degrees C the pattern became cyclic. In most DGCs, there was no clear distinction between the closed and flutter phases in both strains thus data for these phases were combined and analyzed as the interburst phase. The probability that B. germanica would breath discontinuously varied with temperature. Most cockroaches (62.8%) displayed DGCs at 10 degrees C, therefore measurement of metabolic rate and water loss was carried out at this temperature. Using repeated measures of analysis of variance, the interburst and burst V(.)(CO(2))(ml h(-1)) were not significantly different between the two strains. The variability in CO(2) emission during the interburst and burst phases over time was not significantly different from cycle to cycle or between strains. Overall metabolic rate during the entire recording was not significantly different between both strains. There was a significant difference in the duration of the interburst and burst phases between the strains. The susceptible strain had significantly longer interburst and burst phase durations during a complete DGC than the resistant strain. The interburst and burst phase durations were 5.01+/-0.19 and 6.21+/-0.13 min, respectively, for the resistant strain, whereas the durations were 7.16+/-0.37 and 6.73+/-0.17 min, respectively, for the susceptible strain. This resulted in a DGC of significantly longer duration (13.89+/-0.44 min) in the susceptible strain compared with the resistant strain (11.23+/-0.26 min). The duration of the interburst phase was significantly different from the open phase duration in the resistant strain such that during a single DGC lasting approximately 11.23 min, 43.5% consisted of the interburst phase while the burst phase made up 56.5% of the cycle. The cuticular permeability at 10 degrees C and 0% RH was 2.26 microg cm(-2) h(-1) mmHg(-1) for the resistant strain and 3.42 microg cm(-2) h(-1) mmHg(-1) for the susceptible strain. In both strains, cuticular transpiration accounted for approximately 95% of total water loss. The significantly longer duration of the interburst phase of the susceptible strain was not important in reducing water loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号