首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Selection exerted by herbivores is a major force driving the evolution of plant defensive characters such as leaf trichomes or secondary metabolites. However, plant defense expression is highly variable among populations and identifying the sources of this variation remains a major challenge. Plant populations are often distributed across broad geographic ranges and are exposed to different herbivore communities, ranging from generalists (that feed on diverse plant species) to specialists (that feed on a restricted group of plants). We studied eight populations of the plant Datura stramonium usually eaten by specialist or generalist herbivores, in order to examine whether the pattern of phenotypic selection on secondary compounds (atropine and scopolamine) and a physical defense (trichome density) can explain geographic variation in these traits. Following co-evolutionary theory, we evaluated whether a more derived alkaloid (scopolamine) confers higher fitness benefits than its precursor (atropine), and whether this effect differs between specialist and generalist herbivores. Our results showed consistent directional selection in almost all populations and herbivores to reduce the concentration of atropine. The most derived alkaloid (scopolamine) was favored in only one of the populations, which is dominated by a generalist herbivore. In general, the patterns of selection support the existence of a selection mosaic and accounts for the positive correlation observed between atropine concentration and plant damage by herbivores recorded in previous studies.  相似文献   

2.
Induced plant responses to herbivory appear to be universal, yet the degree to which they are specific to sets of herbivores is poorly understood. The generalist/specialist hypothesis predicts that generalist herbivores are more often negatively affected by host plant defenses, wheras specialists may be either unaffected by or attracted to these same "plant defenses". Therefore, specialists should be less predictable than generalists in their responses to induced plant resistance traits. To better understand the variation in plant responses to herbivore attack, and the impacts these responses have on specialist herbivores, we conducted a series of experiments examining pairwise interactinos between two specialaist herbivores of the common milkweed ( Asclepias syriaca ). We damaged plants mechnically, with swamp milkweed beetles ( Labidomera clivicollis ), or with monarchs ( Danaus plexippus ), and then asessed specificity of elicitation, both by measuring a putative defensive trait (latex volume) and by challenging plants with insects of both species in bioasays. Latex production increased by 34% and 13% following beetle and monarch herbivory, respectively, but only beetles significantly elevated latex production compared to undamaged controls. While beetle growth was negatively affected by latex across all experiments, beetles were not affected by previous damage caused by conspecifies or by monarchs. In contrast, monarchs feeding on previously damaged plants were 20% smaller, and their response was the same on plants damaged mechnically or by either herbivore. Therefore, these specialist herbivores exhibit both specificity of elicitation in plant responses and specificity of effects in response to prior damage.  相似文献   

3.
During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.  相似文献   

4.
Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance.  相似文献   

5.
Quantitative differences in plant defence metabolites, such as glucosinolates, may directly affect herbivore preference and performance, and indirectly affect natural enemy pressure. By assessing insect abundance and leaf damage rate, we studied the responses of insect herbivores to six genotypes of Brassica oleracea var. acephala, selected from the same cultivar for having high or low foliar content of sinigrin, glucoiberin and glucobrassicin. We also investigated whether the natural parasitism rate was affected by glucosinolates. Finally, we assessed the relative importance of plant chemistry (bottom-up control) and natural enemy performance (top-down control) in shaping insect abundance, the ratio of generalist/specialist herbivores and levels of leaf damage. We found that high sinigrin content decreased the abundance of the generalist Mamestra brassicae (Lepidoptera, Noctuidae) and the specialist Plutella xylostella (Lepidoptera, Yponomeutidae), but increased the load of the specialist Eurydema ornatum (Hemiptera, Pentatomidae). Plants with high sinigrin content suffered less leaf injury. The specialist Brevicoryne brassicae (Hemiptera, Aphididae) increased in plants with low glucobrassicin content, whereas the specialists Pieris rapae (Lepidoptera, Pieridae), Aleyrodes brassicae (Hemiptera, Aleyrodidae) and Phyllotreta cruciferae (Coleoptera, Chrysomelidae) were not affected by the plant genotype. Parasitism rates of M. brassicae larvae and E. ornatum eggs were affected by plant genotype. The ratio of generalist/specialist herbivores was positively correlated with parasitism rate. Although both top-down and bottom-up forces were seen to be contributing, the key factor in shaping both herbivore performance and parasitism rate was the glucosinolate concentration, which highlights the impact of bottom-up forces on the trophic cascades in crop habitats.  相似文献   

6.
Mooney KA  Pratt RT  Singer MS 《PloS one》2012,7(4):e34403
Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores.  相似文献   

7.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

8.
Optimality theory for plant defense against herbivores predicts an evolutionary tradeoff between the abilities to compete and defend. We tested this hypothesis by studying the effects of genetic variation in competitiveness on defense expression. Two closely related and differentially competitive congeners were compared for levels of resistance, tolerance, and secondary metabolite production. In a growth room experiment, plants of Arabis drummondii and A. holboellii were grown in the presence and absence of the common bunch grass Boutelloua gracilis, the specialist herbivore Plutella xylostella, and generalist herbivore Trichoplusia ni. Tolerance to competition, measured as growth next to the grass relative to controls in the absence of grass, was greatest for A. drummondii, the species that occurred in communities with higher densities of inter-specific neighbors. Measures of defense (resistance to herbivores, tolerance to damage, and concentrations of glucosinolates) varied inconsistently between the Arabis, species, depending on type of herbivore, competition level, and type of defense. The better competitor A. drummondii was more resistant to specialist herbivores, as in the field, and exhibited greater herbivore- and competition-induced changes in glucosinolate profiles. Further, when plants of A. drummondii were fed upon in competitive environments, the induced glucosinolate response was reduced while tolerance levels increased in an apparent switching of induced strategies. We suggest that competitiveness and defense responses are sometimes positively correlated because some defensive traits also function as competitive traits. A competitive function for defenses may also explain why defenses were affected by competition. Alternatively, since the induced response did not increase estimates of total glucosinolate content significantly, minimal defense costs might also allow the simultaneous evolution of competitiveness and defense. Finally, when faced with both herbivory and competition, some competitive species, such as A. drummondii, may switch to growth-based rather than toxin-based strategies as recent theoretical models predict.  相似文献   

9.
Sorensen JS  Dearing MD 《Oecologia》2003,134(1):88-94
Constraints on rates of detoxification and elimination of plant toxins are thought to be responsible for limiting dietary specialization in mammalian herbivores. This hypothesis, known as the detoxification limitations hypothesis, suggests that most mammalian herbivores are generalists to avoid overdosing on toxins from a single plant species. The hypothesis also predicts that the few mammalian specialists that exist should have adaptations for rapid detoxification and elimination of plant secondary compounds. We took a pharmacological approach to test whether specialists eliminate toxins from the bloodstream faster than generalists. We compared elimination rate and total exposure of alpha-pinene in closely related dietary specialist and generalist woodrats, Neotoma stephensi and N. albigula, respectively. Animals were orally gavaged with alpha-pinene, a plant secondary compound present in the natural diets of both woodrat species. We collected venous blood at 3, 6, 10, 15, and 20 min post-ingestion of alpha-pinene. Blood was analyzed for alpha-pinene concentration using gas chromatography. We found that specialist and generalist woodrats did not differ in elimination rates of alpha-pinene. However, specialists had lower exposure levels of alpha-pinene than generalists due to lower initial delivery of alpha-pinene to the general circulation. The levels of alpha-pinene detected in the bloodstream of specialists were 4.7-5.3x lower over all time intervals than generalists. Thus, specialists encounter a functionally lower dose of toxin than generalists. We suggest that the lower exposure level of specialist woodrats may be due to mechanisms in the gut that decrease toxin absorption. Regardless of mechanism, lower exposure to plant toxins may allow specialists to forage on diets with high toxin concentrations thereby facilitating dietary specialization.  相似文献   

10.
Anurag A. Agrawal 《Oikos》2000,89(3):493-500
Inducible plant resistance against herbivores is becoming a paradigm of plant–herbivore ecology. Fundamental to understanding induced resistance and its evolutionary ecology is specificity of "induction" and "effects". Specificity in the induction of resistance refers to whether plant damage by various herbivores causes the same response in plants. Specificity in the effects of induced resistance refers to whether induction has the same consequences (i.e., reduced preference or performance) for various herbivores. I examined both specificity of induction and effect employing four lepidopteran herbivores and wild radish plants, a system for which fitness benefits and costs of induction have been documented for the plant. Variation in the specificity of induction and effects of induced plant resistance was found; however, this variation was not associated with diet specialization in the herbivores (i.e., specialists vs generalists). Induction caused by Plutella (specialist) and Spodoptera (generalist) resulted in general resistance to all of the herbivores, induction caused by Pieris (specialist) induced resistance only to Spodoptera (generalist) and Pieris , and plant damage by Trichoplusia (generalist) failed to induce resistance and reduce the performance of any of the herbivores. To the contrary, plants damaged by Trichoplusia supported enhanced growth of subsequently feeding Trichoplusia compared to uninduced controls. These results add a novel level of complexity to interactions between plants and leaf chewing caterpillars. Within the same guild of feeders, some herbivores cause strong induced resistance, no induced resistance, or induced susceptibility. Similarly, caterpillar species were variable in the level to which induced resistance affected their performance. Such interactions limit the possibility of pairwise coevolution between plants and herbivores, and suggest that coevolution can only be diffuse.  相似文献   

11.
Insect parasitoids can play ecologically important roles in virtually all terrestrial plant–insect herbivore interactions, yet whether parasitoids alter the defensive traits that underlie interactions between plants and their herbivores remains a largely unexplored question. Here, we examined the reciprocal trophic interactions among populations of the wild cabbage Brassica oleracea that vary greatly in their production of defensive secondary compounds – glucosinolates (GSs), a generalist herbivore, Trichoplusia ni, and its polyembryonic parasitoid Copidosoma floridanum. In a greenhouse environment, plants were exposed to either healthy (unparasitized), parasitized, or no herbivores. Feeding damage by herbivores induced higher levels of the indole GSs, glucobrassicin and neoglucobrassicin, but not any of the other measured GSs. Herbivores parasitized by C. floridanum induced cabbage plants to produce 1.5 times more indole GSs than levels induced by healthy T. ni and five times more than uninduced plants. As a gregarious endoparasitoid, C. floridanum causes its host T. ni to feed more than unparasitized herbivores resulting in increased induction of indole GSs. In turn, herbivore fitness parameters (including differential effects on male and female contributions to lifetime fecundity in the herbivore) were negatively correlated with the aliphatic GSs, sinigrin and gluconapin, whereas parasitoid fitness parameters were negatively correlated with the indole GSs, glucobrassicin and neoglucobrassicin. That herbivores and their parasitoids appear to be affected by different sets of GSs was unexpected given the intimate developmental associations between host and parasitoid. This study is the first to demonstrate that parasitoids, through increasing feeding by their herbivorous hosts, can induce higher levels of non‐volatile plant chemical defenses. While parasitoids are widely recognized to be ubiquitous in most terrestrial insect herbivore communities, their role in influencing plant–insect herbivore relationships is still vastly underappreciated.  相似文献   

12.
The evolution of plant defense traits has traditionally been explained trough the “coevolutionary arms race” between plants and herbivores. According to this, specialist herbivores have evolved to cope effectively with the defensive traits of their host plants and may even use them as a cue for host location. We analyzed the geographic association between leaf trichomes, two tropane alkaloids (putative resistance traits), and leaf damage by herbivores in 28 populations of Datura stramonium in central Mexico. Since the specialist leaf beetles Epitrix parvula and Lema trilineata are the main herbivores of D. stramonium in central Mexico, we predicted a positive association between plant defense and leaf damage across populations. Also, if physical environmental conditions (temperature or precipitation) constrain the expression of plant defense, then the geographic variation in leaf damage should be explained partially by the interaction between defensive traits and environmental factors. Furthermore, we studied the temporal and spatial variation in leaf trichome density and leaf damage in five selected populations of D. stramonium sampled in two periods (1997 vs. 2007). We found a positive association between leaf trichomes density and atropine concentration with leaf damage across populations. The interaction between defensive traits and water availability in each locality had a significant effect on the geographic variation in leaf damage. Differences among populations in leaf trichome density are maintained over time. Our results indicate that local plant–herbivore interaction plays an important role in shaping the geographic and temporal variation in plant defense in D. stramonium.  相似文献   

13.
A survey of 85 species of Lepidoptera feeding on 40 hosts on Barro Colorado Island, Panama showed that growth and defensive traits of caterpillars were correlated with the nutritional and defensive traits of their hosts. Growth rates were faster on young than mature leaves, reflecting the higher nitrogen and water content of the former. Growth was also positively correlated with leaf expansion rate, partially because of higher nitrogen and water contents of fast-expanding young leaves. Specialists grew faster than generalists, but both responded positively to nutritional quality. There was no effect of lepidopteran family on growth. In analyses where the effects of nitrogen and water were removed, the residuals for growth rate were greater for young than for mature leaves and were positively correlated with expansion rates of young leaves. This suggests that traits other than nutrition were also important. As young, expanding leaves cannot use toughness as a defense, one possible explanation for the differences in growth is differences in chemical defenses. Growth rate residuals for both specialists and generalists were higher for the more poorly defended fast-expanders, but the effect was greatest for generalists, perhaps because generalists were more sensitive to secondary metabolites. We predicted that slow growth for caterpillars would increase their risk to natural enemies and would select for higher defenses. Generalists had more defensive traits than specialists and were less preferred in feeding trials with ants. Similarly, species feeding on mature leaves were the most defended and those feeding on fast-expanding young leaves were the least defended and most preferred by ants. Thus the effects of plant secondary metabolites and nutrients dictate herbivore growth rates, which in turn influence their susceptibility to the third trophic level and the importance of defenses.  相似文献   

14.
The ‘evolution of increased competitive ability’ (EICA) hypothesis states that reduced herbivory in the introduced range causes an evolutionary shift in resource allocation from herbivore defense to growth. Therefore, according to EICA, introduced genotypes are expected to grow more vigorously than conspecific native genotypes when cultivated under common standardized conditions. The EICA hypothesis also assumes that herbivores will perform better on introduced genotypes compared to native genotypes, because they are less well defended. However, selection for either defense or growth will depend on the type of defense (quantitative or qualitative) employed by the plant, and whether the plant is released from generalist or specialist herbivores. The predictions of the EICA hypothesis might be reversed if a plant experiences increased generalist herbivore pressure in the introduced range, and therefore invests more in qualitative defense. We examined this idea with the invasive perennial mustard, Lepidium draba. We grew a total of 16 populations of L. draba from both its native European and introduced western US ranges under common conditions in a greenhouse. We also tested for differences in plant resistance to the specialist herbivore, Psylliodes wrasei, by conducting a leaf disc feeding bioassay with native and introduced L. draba genotypes. Furthermore, we quantified the generalist herbivore load on L. draba in both ranges in order to assess the selection pressure for increased qualitative defense. Contrary to the original EICA prediction, all plant traits (biomass, number of shoots, length and diameter of longest leaf) tended to be greater for the native, rather than introduced L. draba genotypes. There was no significant difference in the proportion of leaf area consumed by the specialist herbivore between native and introduced genotypes. The generalist herbivore load on L. draba was significantly greater in the introduced range. Our data suggest that the EICA hypothesis does not explain the invasion success of L. draba in the US. Instead, we propose that the reduced vigor of introduced genotypes may be due to selection for increased defense against generalist herbivores in the introduced range.  相似文献   

15.
Nearly all plants possess chemicals that are inferred to play a role in anti‐herbivore defense or resistance. The effects of various chemical defenses can vary among herbivores. Often, plant defensive compounds are examined in broad, inclusive categories, with an emphasis on total quantity, which might ignore qualitative variation in activity. Aristolochic acids are alkaloids characteristic of plants of the genus Aristolochia (Aristolochiaceae). Although aristolochic acids have been documented as effective herbivore deterrents, it remains unknown whether different kinds of aristolochic acid vary in their efficacy as defense against herbivores. We manipulated the aristolochic acid content of artificial diet to examine the effects of four aristolochic acids on larval preference and performance of the generalist herbivore Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Using choice tests, we observed that the four aristolochic acids tested varied in their deterrent effectiveness, with AA‐I having the strongest effect and AA‐II having the weakest effect. No‐choice tests were used to examine larval performance. The effect on performance varied among the aristolochic acids tested. Higher concentrations of aristolochic acid were generally associated with reduced larval developmental rate and larger size at pupation. These results indicate that various forms of aristolochic acid can vary in their effect on herbivores and that simple aggregate measures of total concentration might not reflect the chemical defensive phenotype of the plant.  相似文献   

16.
Increasing plant diversity has long been hypothesized to negatively affect levels of invertebrate herbivory due to a lower number of specialist insect herbivores in more diverse sites, but studies of natural systems have been rare. We used a planned comparison to study herbivory in a set of 19 semi-natural montane grasslands managed as hay meadows. Herbivory was measured in transects through the plant communities, and in individuals of Plantago lanceolata and Trifolium pratense that were transplanted into each meadow. In addition, plant community biomass and arthropod abundances were determined in the grasslands. Before the first mowing in June, mean herbivory levels correlated negatively with plant species richness, as predicted by theory, but they were also significantly affected by plant community biomass and plant community composition. After mowing, herbivory levels were only significantly related to plant community composition. Damage levels in the transplants were lower than herbivory levels in the established plant communities. Most insect herbivores were generalists and not specialists. The number of insect herbivores and spiders were positively correlated and tended to increase with increasing plant species richness. Herbivory levels were correlated negatively with spider abundances. We conclude that while the predicted negative relationship between plant species richness and insect herbivory can be found in grasslands, the underlying mechanism involves generalist rather than specialist herbivores. Our data also suggest a role of natural enemies in generalist herbivore activities.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

17.
1. Phytochemical coevolution theory, a long-standing paradigm in plant–insect interactions, predicts that specialist herbivores are less negatively affected by the allelochemicals of their host plants than are generalist herbivores. Although this theory is prevalent in plant–insect science, it is not always supported by empirical studies measuring the performance of specialist and generalist insects in response to allelochemicals. 2. The present study aimed to investigate: (i) whether there a difference between specialist and generalist performance in response to allelochemicals and (ii) whether the effect of allelochemicals on specialists and generalists depend upon allelochemical class or insect order. 3. A meta-analysis was conducted incorporating 76 effect sizes drawn from studies that directly compared the performance of specialist and generalist insects in response to treatment and control diets. Most of the effect sizes were related to the performance metric growth, the insect order Lepidoptera, and the allelochemical class nitrogen-containing compounds. 4. As predicted by phytochemical coevolution theory, specialist insects responded less negatively to allelochemicals of their hosts than generalist insects in terms of growth. There were no significant differences in terms of fecundity or survival, or among allelochemical classes or insect orders. 5. These results support the prediction of phytochemical coevolution theory that specialist insects respond less negatively to allelochemicals of their hosts than generalists, although only in terms of growth.  相似文献   

18.
Huang W  Carrillo J  Ding J  Siemann E 《Oecologia》2012,170(2):373-382
Herbivory can reduce plant fitness, and its effects can be increased by competition. Though numerous studies have examined the joint effects of herbivores and competitors on plant performance, these interactive effects are seldom considered in the context of plant invasions. Here, we examined variation in plant performance within a competitive environment in response to both specialist and generalist herbivores using Chinese tallow as a model species. We combined tallow plants from native and invasive populations to form all possible pairwise combinations, and designated invasive populations as stronger neighbours and native populations as weaker neighbours. We found that when no herbivory was imposed, invasive populations always had higher total biomass than natives, regardless of their neighbours, which is consistent with our assumption of increased competitive ability. Defoliation by either generalist or specialist herbivores suppressed plant growth but the effects of specialists were generally stronger for invasive populations. Invasive populations had their lowest biomass when fed upon by specialists while simultaneously competing with stronger neighbours. The root/shoot ratios of invasive populations were lower than those of native populations under almost all conditions, and invasive plants were taller than native plants overall, especially when herbivores were present, suggesting that invasive populations may adopt an "aboveground first" strategy to cope with herbivory and competition. These results suggest that release from herbivores, especially specialists, improves an invader's performance and helps to increase its competitive ability. Therefore, increasing interspecific competition intensity by planting a stronger neighbour while simultaneously releasing a specialist herbivore may be an especially effective method of managing invasive plants.  相似文献   

19.
20.
Host ranges are commonly quantified to classify herbivores and plant pathogens as either generalists or specialists. Here, we summarize patterns and mechanisms in the interactions of plants with these enemies along different axes of specificity. We highlight the many dimensions within which plant enemies can specify and consider the underlying ecological, evolutionary and molecular mechanisms. Host resistance traits and enemy effectors emerge as central players determining host utilization and thus host range. Finally, we review approaches to studying the causes and consequences of variation in the specificity of plant-enemy interactions. Knowledge of the molecular mechanisms that determine host range is required to understand host shifts, and evolutionary transitions among specialist and generalist strategies, and to predict potential host ranges of pathogens and herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号