首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contemporary theory predicts that the degree of mimetic similarity of mimics towards their model should increase as the mimic/model ratio increases. Thus, when the mimic/model ratio is high, then the mimic has to resemble the model very closely to still gain protection from the signal receiver. To date, empirical evidence of this effect is limited to a single example where mimicry occurs between species. Here, for the first time, we test whether mimetic fidelity varies with mimic/model ratios in an intraspecific mimicry system, in which signal receivers are the same species as the mimics and models. To this end, we studied a polymorphic damselfly with a single male phenotype and two female morphs, in which one morph resembles the male phenotype while the other does not. Phenotypic similarity of males to both female morphs was quantified using morphometric data for multiple populations with varying mimic/model ratios repeated over a 3 year period. Our results demonstrate that male-like females were overall closer in size to males than the other female morph. Furthermore, the extent of morphological similarity between male-like females and males, measured as Mahalanobis distances, was frequency-dependent in the direction predicted. Hence, this study provides direct quantitative support for the prediction that the mimetic similarity of mimics to their models increases as the mimic/model ratio increases. We suggest that the phenomenon may be widespread in a range of mimicry systems.  相似文献   

2.
3.
Theoretical and empirical observations generally support Darwin's view that sexual dimorphism evolves due to sexual selection on, and deviation in, exaggerated male traits. Wallace presented a radical alternative, which is largely untested, that sexual dimorphism results from naturally selected deviation in protective female coloration. This leads to the prediction that deviation in female rather than male phenotype causes sexual dimorphism. Here I test Wallace's model of sexual dimorphism by tracing the evolutionary history of Batesian mimicry-an example of naturally selected protective coloration-on a molecular phylogeny of Papilio butterflies. I show that sexual dimorphism in Papilio is significantly correlated with both female-limited Batesian mimicry, where females are mimetic and males are non-mimetic, and with the deviation of female wing colour patterns from the ancestral patterns conserved in males. Thus, Wallace's model largely explains sexual dimorphism in Papilio. This finding, along with indirect support from recent studies on birds and lizards, suggests that Wallace's model may be more widely useful in explaining sexual dimorphism. These results also highlight the contribution of naturally selected female traits in driving phenotypic divergence between species, instead of merely facilitating the divergence in male sexual traits as described by Darwin's model.  相似文献   

4.
    
《Current biology : CB》2021,31(19):4381-4387.e6
  1. Download : Download high-res image (107KB)
  2. Download : Download full-size image
  相似文献   

5.
We provide field-based experimental evidence for the frequency-dependent nature of the fitness of alternative mating strategies. We manipulated the frequency of genetically determined phenotypic strategies in six wild populations of the side-blotched lizard, Uta stansburiana. The within-population pattern of mating was assessed using nine microsatellite loci to assign paternity. Within populations of the side-blotched lizard exist three colour morphs (orange, blue and yellow) associated with male mating strategy. The frequency of these morphs has previously been found to oscillate over a 4- to 5-year period. We found, as predicted, that the common phenotype lost fitness to its antagonist. The mating patterns of all six populations adhered to a priori predictions that were derived from previous empirical and theoretical observations on this system. We found that the frequency-dependent nature of male fitness could be accounted for by the composition of their competitors at a small local population level, driven by associations within a focal female's social neighbourhood.  相似文献   

6.
Ischnura senegalensis females exhibit color dimorphism, consisting of an andromorph and a gynomorph, which might be maintained under a frequency-dependent process of mating harassment by mate-searching males. Males change their mating preference for female morph depending on prior copulation experience. Binary choice experiments between two female morphs were carried out in four local populations in the early morning (07.00–09.00 hours) and the afternoon (12.00–14.00 hours), times which mark the onset and the end of diurnal mating activity, respectively. According to the line census along the water's edge, the proportion of andromorphs in the female population varied from 21 to 67% throughout the survey period for four local populations. Males showed non-biased preference for female morphs in the early morning in each local population, while they chose the common morph in the afternoon. Male mating preference for female morphs was positively correlated to the proportion of female morphs in the population. If the selective mating attacks on the common female morphs inhibit their foraging and/or oviposition behavior, frequency-dependent male mating attacks might provide a selective force for maintaining the female color dimorphism in I. senegalensis .  相似文献   

7.
We examined body color polymorphism in the aphidMacrosiphoniella yomogicola from July to September 1993. We classified body color into eight types: green 1, green 2, red 1, red 2, white, orange, yellow and mist. The frequencies of body color varied with time and among patches of the host plant, yomogi (Artemisia spp.). Color diversity within a shoot was calculated using the Shannon diversity index. Of five usable data sets, three showed negative relationships between color diversity and mortality. The regression coefficients for two of these relationships were significant. No significant relationship between mortality and the number of aphids was found. The color diversity was not significantly related to a particular body color found on a yomogi shoot. Color polymorphism may be maintained because selection may favor a high color diversity on the host plant shoot.  相似文献   

8.
9.
    
Conspicuous female coloration can evolve through male mate choice or via female-female competition thereby increasing female mating success. However, when mating is not beneficial, such as in pre-reproductive females, selection should favor cryptic rather than conspicuous coloration to avoid male detection and the associated harassment. Nevertheless, conspicuous female coloration occurs in many prereproductive animals, and its evolution remains an enigma. Here, I studied conspicuous female coloration in Agriocnemis femina damselflies, in which the conspicuous red color of the immature females changes to a less conspicuous green approximately a week after their emergence. I measured body size, weight, and egg numbers of the female morphs and found that red females are smaller and lighter and do not carry developed eggs. Finally, I calculated the occurrence frequency and mating frequency of red and green females in several populations over a three-year period. The results demonstrate that red females mated less frequently than green females even when red females were the abundant morph in the populations. I concluded that conspicuous female coloration is likely to function as a warning signal of sexual unprofitability, thereby reducing sexual harassment for females and unprofitable mating for males.  相似文献   

10.
Male fiddler crabs (genus Uca) have an enlarged major claw that is used during fights. In most species, 50% of males have a major claw on the left and 50% on the right. In Uca vocans vomeris, however, less than 1.4% of males are left-clawed. Fights between opponents with claws on the same or opposite side result in different physical alignment of claws, which affects fighting tactics. Left-clawed males mainly fight opposite-clawed opponents, so we predicted that they would be better fighters due to their relatively greater experience in fighting opposite-clawed opponents. We found, however, that (i) a left-clawed male retains a burrow for a significantly shorter period than a size-matched right-clawed male, (ii) when experimentally displaced from their burrow, there is no difference in the tactics used by left- and right-clawed males to obtain a new burrow; however, right-clawed males are significantly more likely to initiate fights with resident males, and (iii) right-clawed residents engage in significantly more fights than left-clawed residents. It appears that left-clawed males are actually less likely to fight, and when they do fight they are less likely to win, than right-clawed males. The low-level persistence of left-clawed males is therefore unlikely to involve a frequency-dependent advantage associated with fighting experience.  相似文献   

11.
Conspicuous heritable polymorphisms are useful to address the question if morph frequencies are stable or whether they fluctuate between generations. Ecological geneticists have studied colour polymorphisms in the past, but there are few long-term studies of genetic dynamics across multiple generations. We studied morph-frequency dynamics and female fecundity in the trimorphic blue-tailed damselfly (Ischnura elegans). The morphs include a male-coloured (androchrome) type of female, which is thought to be maintained by frequency-dependent sexual conflict. Morph frequencies changed significantly between years across all populations. There was evidence for directional frequency change since androchrome females increased in 9 of 10 populations across a 4-year period. There was heterogeneity between populations in their evolutionary trajectories, partly caused by population age: androchrome frequencies were initially high in young populations but gradually decreased and approached the level of old populations. We discuss the possible causes of morph-frequency fluctuations, and the role of morph-specific fecundity, dispersal and other forces influencing evolutionary dynamics in this system.  相似文献   

12.
    
Abstract.  According to biophysical principles, colour and size are important phenotypic factors that may influence body temperature and activity in ectothermic insects. In taxa showing female-limited polymorphism, males and female morphs differ in body colour, size and activity pattern. However, no previous study has evaluated whether such phenotypic and behavioural variation relates to differences between males and female morphs in thermal properties. In the present study, the relationships between body colour, size, activity and body temperature are examined under laboratory and field conditions, for the polymorphic damselfly Enallagma cyathigerum (Charpentier, 1840) (Odonata: Zygoptera). Contrary to expectation, males and female colour morphs of this species do not differ in thermal properties (i.e. heating characteristics or field body temperatures). When questioning phenotype and activity, temperature does not appear to be relevant for understanding the maintenance of female-limited polymorphism.  相似文献   

13.
    
Abstract.— The common morning glory, Ipomoea purpurea , exhibits a flower color polymorphism at the W locus throughout the southeastern North America. The W locus controls whether flowers will be darkly pigmented ( WW ), lightly pigmented ( Ww ), or white with pigmented rays ( ww ). In this report, we describe results of a perturbation, or convergence, experiment using five plots designed to determine whether balancing selection operates on the W locus. The pattern of gene frequency changes obtained are indicative of balancing selection operating at the W locus, providing direct evidence that both the alleles are actively maintained by selection.  相似文献   

14.
Sinervo  Barry 《Genetica》2001,(1):417-434
Analysis of evolutionarily stable strategies (ESS) and decade-long field studies indicate that two color morphs of female side-blotched lizards exhibit density- and frequency-dependent strategies. Orange females are r-strategists: they lay large clutches of small progeny that are favored at low density. Conversely, yellow females are K-strategists: they lay small clutches of large progeny that are favored when carrying capacity is exceeded and the population crashes to low density. Interactions among three male morphs resembles a rock-paper-scissors (RPS) game. Fertilization success of males depends on frequency of neighboring morphs. Orange males usurp territory from blue neighbors and thereby mate with many females. However, orange males are vulnerable to cuckoldry by sneaky yellow males that mimic females. The yellow strategy is thwarted in turn by the mate-guarding strategy of blue. Sinervo and Lively (1996) developed a simple asexual model of the RPS game. Here, we model the dynamics of male and female morphs with one- and two-locus genetic models. Male and female games were considered in isolation and modeled as games that were genetically coupled by the same locus. Parameters for payoff matrices, which describe the force of frequency-dependent selection in ESS games, were estimated from free-ranging animals. Period of cycles in nature was 5 years for males and 2 years for females. Only the one locus model with three alleles (o, b, y) was capable of driving rapid cycles in male and female games. Furthermore, the o allele must be dominant to the y allele in females. Finally, the amplitude of male cycles was only reproduced in genetic models which allowed for irreversible plasticity of by genotypes, which is consistent with hormonally-induced changes that transform some males with yellow to dark blue. We also critique experimental designs that are necessary to detect density- and frequency-dependent selection in nature. Finally, runaway ESS games are discussed in the context of self-reinforcing genetic correlations that build and promote the formation of morphotypic variation.  相似文献   

15.
    
Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land‐dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis that seems to serve no other function except to anchor muscles that maneuver the penis. Here, we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: (1) males from species with relatively intense sexual selection (inferred by relative testes size) tend to evolve larger penises and pelvic bones compared to their body length, and (2) pelvic bone shape has diverged more in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior‐most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Evolutionary theory predicts that sexually antagonistic loci will be preferentially sex-linked, and this association can be empirically testes with data on sex-biased gene expression with the assumption that sex-biased gene expression represents the resolution of past sexual antagonism. However, incomplete dosage compensating mechanisms and meiotic sex chromosome inactivation have hampered efforts to connect expression data to theoretical predictions regarding the genomic distribution of sexually antagonistic loci in a variety of animals. Here we use data on the underlying regulatory mechanism that produce expression sex-bias to test the genomic distribution of sexually antagonistic genes in chicken. Using this approach, which is free from problems associated with the lack of dosage compensation in birds, we show that female-detriment genes are significantly overrepresented on the Z chromosome, and female-benefit genes underrepresented. By contrast, male-effect genes show no over- or underrepresentation on the Z chromosome. These data are consistent with a dominant mode of inheritance for sexually antagonistic genes, in which male-benefit coding mutations are more likely to be fixed on the Z due to stronger male-specific selective pressures. After fixation of male-benefit alleles, regulatory changes in females evolve to minimize antagonism by reducing female expression.  相似文献   

17.
    
In tristylous plant populations, style-morph frequencies are governed by an interaction between frequency-dependent selection due to disassortative mating and stochastic processes. Provided that there are no inherent fitness differences among morphs, frequency-dependent selection should result in equal morph frequencies at equilibrium. Stochastic models indicate that the short-styled morph has the highest and the long-styled morph the lowest probability of being lost from local populations as a result of random processes. We surveyed the morph composition of 82 populations of the tristylous, self-incompatible herb Lythrum salicaria in two archipelagos, one in central and one in northern Sweden, located close to the range-margin of the species. To examine whether deviations from even morph frequencies can be explained by among-morph differences in reproductive success, we quantified flower and seed production in six and three populations in the northern and southern archipelago, respectively, and we recorded segregation ratios in offspring produced in six trimorphic populations in the northern area. Seed germination and offspring growth were studied in the greenhouse. Ninety percent of the populations in the southern archipelago (N = 31) and 69% of the populations in the northern archipelago (N = 35) were trimorphic; the remaining populations were dimorphic (only populations consisting of at least three flowering plants considered). Dimorphic populations were smaller than trimorphic populations, as predicted by stochastic models. There was a striking difference in the morph composition of L. salicaria populations between the two archipelagos. In the southern archipelago, there was a slight excess of the long-styled morph and a corresponding deficiency of the short-styled morph. In contrast, the northern populations were characterized by a marked deficiency of the mid-styled morph: the average frequency of the mid-styled morph in trimorphic populations was 0.21, and nine of eleven dimorphic populations lacked the mid-styled morph. In both archipelagos, the long-styled morph (the most common morph) produced about 20% fewer seeds per fruit than the other morphs. The long-styled morph also tended to produce fewer seeds per plant. A hand-pollination experiment performed in two of the northern populations indicated that seed production per flower was pollen-limited in the long-styled morph but not in the other two morphs. Seed germination and offspring size after 24 weeks of growth did not differ among morphs. The mid-styled morph tended to have a higher representation in the offspring than in the parental generation in all six trimorphic populations studied further indicating that the deficiency of the mid-styled morph in the northern archipelago does not represent an equilibrium. Taken together, the results do not support the hypothesis that morph-specific differences in reproductive success can account for deviations from even morph frequencies in L. salicaria. It is suggested that among-morph differences in other components of fitness and historical factors may contribute to the current morph structure.  相似文献   

18.
  总被引:2,自引:0,他引:2  
Enantiostyly, the reciprocal deflection of the style to the left or right side of the floral axis has evolved independently in at least a dozen angiosperm families. Unlike other plant sexual polymorphisms, the adaptive significance of these mirror‐image flowers remains unclear. Most authors have interpreted enantiostyly as a floral mechanism that promotes cross‐pollination. However, any functional interpretation is complicated by the fact that enantiostyly occurs in two forms. In monomorphic enantiostyly there are left‐ and right‐styled flowers on the same plant, while in dimorphic enantiostyly they are on separate individuals. In this paper we develop a model of pollen transfer which indicates that monomorphic enantiostyly should reduce geitonogamous pollination compared to a non‐enantiostylous condition, and that the lowest levels of geitonogamous pollination should occur in dimorphic enantiostyly. We tested these predictions using floral manipulations of bee‐pollinated Solanum rostratum in garden arrays. We compared mating patterns and fertility in five array types: non‐enantiostylous and straight‐styled, monomorphic enantiostylous, dimorphic enantiostylous, and arrays uniform for either left or right stylar deflection. Outcrossing rates in non‐enantiostylous arrays (t = 0.33 ± 0.04) were significantly lower than all other arrays, while monomorphic enantiostylous arrays (t = 0.74 ± 0.06) had significantly lower outcrossing rates than dimorphic enantiostylous arrays (t = 0.88 ± 0.04) and those uniform for stylar deflection (t = 0.84 ± 0.04). In dimorphic enantiostylous arrays, intermorph pollen transfer accounted for 75% of all outcrossing events. In pollen‐limited situations, both types of enantiostylous arrays had significantly higher female fertility than arrays fixed for one direction, demonstrating that enantiostyly promotes pollen transfer between flowers of opposite stylar orientation. Our results provide support for the hypothesis that enantiostyly functions to increase the precision of cross‐pollination in bee‐pollinated plants by reducing geitonogamy. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 167–179.  相似文献   

19.
    
Recent documentations of sexually antagonistic genetic variation in fitness have spurred an interest in the mechanisms that may act to maintain such variation in natural populations. Using individual-based simulations, I show that positive assortative mating by fitness increases the amount of sexually antagonistic genetic variance in fitness, primarily by elevating the equilibrium frequency of heterozygotes, over most of the range of sex-specific selection and dominance. Further, although the effects of assortative mating by fitness on the protection conditions of polymorphism in sexually antagonistic loci were relatively minor, it widens the protection conditions under most reasonable scenarios (e.g., under heterozygote superiority when fitness is averaged across the sexes) but can also somewhat narrow the protection conditions under other circumstances. The near-ubiquity of assortative mating in nature suggests that it may contribute to upholding standing sexually antagonistic genetic variation in fitness.  相似文献   

20.
Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号