首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During leaf senescence, Rubisco is gradually degraded and its components are recycled within the plant. Although Rubisco can be mobilized to the vacuole by autophagy via specific autophagic bodies, the importance of this process in Rubisco degradation has not been shown directly. Here, we monitored Rubisco autophagy during leaf senescence by fusing synthetic green fluorescent protein (sGFP) or monomeric red fluorescent protein (mRFP) with Rubisco in Arabidopsis (Arabidopsis thaliana). When attached leaves were individually exposed to darkness to promote their senescence, the fluorescence of Rubisco‐sGFP was observed in the vacuolar lumen as well as chloroplasts. In addition, release of free‐sGFP due to the processing of Rubisco‐sGFP was observed in the vacuole of individually darkened leaves. This vacuolar transfer and processing of Rubisco‐sGFP was not observed in autophagy‐deficient atg5 mutants. Unlike sGFP, mRFP was resistant to proteolysis in the leaf vacuole of light‐grown plants. The vacuolar transfer and processing of Rubisco‐mRFP was observed at an early stage of natural leaf senescence and was also obvious in leaves naturally covered by other leaves. These results indicate that autophagy contributes substantially to Rubisco degradation during natural leaf senescence as well as dark‐promoted senescence.  相似文献   

3.
Autophagy     
《Autophagy》2013,9(10):1477-1493
  相似文献   

4.
Autophagy is a transport system of cytoplasmic components to the lysosome/vacuole for degradation well conserved in eukaryotes. Autophagy is strongly induced by nutrient starvation. Several specific proteins, including amino acid synthesis enzymes and vacuolar enzymes, are increased during nitrogen starvation in wild-type cells but not in autophagy-defective delta atg7 cells despite similar mRNA levels. We further examined deficiencies in these cells. Bulk protein synthesis was substantially reduced in delta atg7 cells under nitrogen starvation compared with wild-type cells. The total intracellular amino acid pool was reduced in delta atg7 cells, and the levels of several amino acids fell below critical values. In contrast, wild-type cells maintained amino acid levels compatible with life. Autophagy-defective cells fail to maintain physiologic amino acid levels, and their inability to synthesize new proteins may explain most phenotypes associated with autophagy mutants at least partly.  相似文献   

5.
Ribosomes account for a majority of the cell''s RNA and much of its protein and represent a significant investment of cellular resources. The turnover and degradation of ribosomes has been proposed to play a role in homeostasis and during stress conditions. Mechanisms for the turnover of rRNA and ribosomal proteins have not been fully elucidated. We show here that the RNS2 ribonuclease and autophagy participate in RNA turnover in Arabidopsis thaliana under normal growth conditions. An increase in autophagosome formation was seen in an rns2–2 mutant, and this increase was dependent on the core autophagy genes ATG9 and ATG5. Autophagosomes and autophagic bodies in rns2–2 mutants contain RNA and ribosomes, suggesting that autophagy is activated as an attempt to compensate for loss of rRNA degradation. Total RNA accumulates in rns2–2, atg9–4, atg5–1, rns2–2 atg9–4, and rns2–2 atg5–1 mutants, suggesting a parallel role for autophagy and RNS2 in RNA turnover. rRNA accumulates in the vacuole in rns2–2 mutants. Vacuolar accumulation of rRNA was blocked by disrupting autophagy via an rns2–2 atg5–1 double mutant but not by an rns2–2 atg9–4 double mutant, indicating that ATG5 and ATG9 function differently in this process. Our results suggest that autophagy and RNS2 are both involved in homeostatic degradation of rRNA in the vacuole.  相似文献   

6.
Suzuki SW  Onodera J  Ohsumi Y 《PloS one》2011,6(2):e17412
Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.  相似文献   

7.
Lun Zhao  Li Deng  Qing Zhang  Xue Jing  Meng Ma  Bin Yi 《Autophagy》2018,14(4):702-714
Sulfonylurea (SU) herbicides inhibit branched-chain amino acid (BCAA) biosynthesis by targeting acetolactate synthase. Plants have evolved target-site resistance and metabolic tolerance to SU herbicides; the GCN2 (general control non-repressible 2) pathway is also involved in SU tolerance. Here, we report a novel SU tolerance mechanism, autophagy, which we call ‘homeostatic tolerance,’ is involved in amino acid signaling in Arabidopsis. The activation and reversion of autophagy and GCN2 by the SU herbicide tribenuron-methyl (TM) and exogenous BCAA, respectively, confirmed that TM-induced BCAA starvation is responsible for the activation of autophagy and GCN2. Genetic and biochemical analyses revealed a lower proportion of free BCAA and more sensitive phenotypes in atg5, atg7, and gcn2 single mutants than in wild-type seedlings after TM treatment; the lowest proportion of free BCAA and the most sensitive phenotypes were found in atg5 gcn2 and atg7 gcn2 double mutants. Immunoblotting and microscopy revealed that TM-induced activation of autophagy and GCN2 signaling do not depend on the presence of each other, and these 2 pathways may serve as mutually compensatory mechanisms against TM. TM inhibited the TOR (target of rapamycin), and activated autophagy in an estradiol-induced TOR RNAi line, suggesting that TM-induced BCAA starvation activates autophagy, probably via TOR inactivation. Autophagy and GCN2 were also activated, and independently contributed to TM tolerance in plants conferring metabolic tolerance. Together, these data suggest that autophagy is a proteolytic process for amino acid recycling and contributes to GCN2-independent SU tolerance, probably by its ability to replenish fresh BCAA.  相似文献   

8.
Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.  相似文献   

9.
Macroautophagy/autophagy is a self-degradation process that combats starvation. Lipids are the main energy source in kidney proximal tubular cells (PTCs). During starvation, PTCs increase fatty acid (FA) uptake, form intracellular lipid droplets (LDs), and hydrolyze them for use. The involvement of autophagy in lipid metabolism in the kidney remains largely unknown. Here, we investigated the autophagy-mediated regulation of renal lipid metabolism during prolonged starvation using PTC-specific Atg5-deficient (atg5-TSKO) mice and an in vitro serum starvation model. Twenty-four h of starvation comparably induced LD formation in the PTCs of control and atg5-TSKO mice; however, additional 24 h of starvation reduced the number of LDs in control mice, whereas increases were observed in atg5-TSKO mice. Autophagic degradation of LDs (lipophagy) in PTCs was demonstrated by electron microscopic observation and biochemical analysis. In vitro pulse-chase assays demonstrated that lipophagy mobilizes FAs from LDs to mitochondria during starvation, whereas impaired LD degradation in autophagy-deficient PTCs led to decreased ATP production and subsequent cell death. In contrast to the in vitro assay, despite impaired LD degradation, kidney ATP content was preserved in 48-h starved atg5-TSKO mice, probably due to increased utilization of ketone bodies. This compensatory mechanism was accompanied by a higher plasma FGF21 (fibroblast growth factor 21) level and its expression in the PTCs; however, this was not essential for the production of ketone bodies in the liver during prolonged starvation. In conclusion, lipophagy combats prolonged starvation in PTCs to avoid cellular energy depletion.  相似文献   

10.
Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.  相似文献   

11.
Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.  相似文献   

12.
Germination and early seedling establishment are developmental stages in which plants face limited nutrient supply as their photosynthesis mechanism is not yet active. For this reason, the plant must mobilize the nutrient reserves provided by the mother plant in order to facilitate growth. Autophagy is a catabolic process enabling the bulk degradation of cellular constituents in the vacuole. The autophagy mechanism is conserved among eukaryotes, and homologs of many autophagy-related (ATG) genes have been found in Arabidopsis thaliana. T-DNA insertion mutants (atg mutants) of these genes display higher sensitivity to various stresses, particularly nutrient starvation. However, the direct impact of autophagy on cellular metabolism has not been well studied. In this work, we used etiolated Arabidopsis seedlings as a model system for carbon starvation. atg mutant seedlings display delayed growth in response to carbon starvation compared with wild-type seedlings. High-throughput metabolomic, lipidomic, and proteomic analyses were performed, as well as extensive flux analyses, in order to decipher the underlying causes of the phenotype. Significant differences between atg mutants and wild-type plants have been demonstrated, suggesting global effects of autophagy on central metabolism during carbon starvation as well as severe energy deprivation, resulting in a morphological phenotype.  相似文献   

13.
Autophagy is an evolutionarily conserved intracellular process for vacuolar degradation of cytoplasmic components. In higher plants, autophagy defects result in early senescence and excessive immunity-related programmed cell death (PCD) irrespective of nutrient conditions; however, the mechanisms by which cells die in the absence of autophagy have been unclear. Here, we demonstrate a conserved requirement for salicylic acid (SA) signaling for these phenomena in autophagy-defective mutants (atg mutants). The atg mutant phenotypes of accelerated PCD in senescence and immunity are SA signaling dependent but do not require intact jasmonic acid or ethylene signaling pathways. Application of an SA agonist induces the senescence/cell death phenotype in SA-deficient atg mutants but not in atg npr1 plants, suggesting that the cell death phenotypes in the atg mutants are dependent on the SA signal transducer NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. We also show that autophagy is induced by the SA agonist. These findings imply that plant autophagy operates a novel negative feedback loop modulating SA signaling to negatively regulate senescence and immunity-related PCD.  相似文献   

14.
15.
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.  相似文献   

16.
We recently reported that autophagy plays a role in chloroplasts degradation in individually-darkened senescing leaves. Chloroplasts contain approximately 80% of total leaf nitrogen, mainly as photosynthetic proteins, predominantly ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco). During leaf senescence, chloroplast proteins are degraded as a major source of nitrogen for new growth. Concomitantly, while decreasing in size, chloroplasts undergo transformation to non-photosynthetic gerontoplasts. Likewise, over time the population of chloroplasts (gerontoplasts) in mesophyll cells also decreases. While bulk degradation of the cytosol and organelles is mediated by autophagy, the role of chloroplast degradation is still unclear. In our latest study, we darkened individual leaves to observe chloroplast autophagy during accelerated senescence. At the end of the treatment period chloroplasts were much smaller in wild-type than in the autophagy defective mutant, atg4a4b-1, with the number of chloroplasts decreasing only in wild-type. Visualizing the chloroplast fractions accumulated in the vacuole, we concluded that chloroplasts were degraded by two different pathways, one was partial degradation by small vesicles containing only stromal-component (Rubisco containing bodies; RCBs) and the other was whole chloroplast degradation. Together, these pathways may explain the morphological attenuation of chloroplasts during leaf senescence and describe the fate of chloroplasts.Key words: Arabidopsis, autophagy, chloroplast, dark treatment, leaf senescence, nutrients recyclingThe most abundant chloroplast protein is Rubisco, comprising approximately 50% of the soluble protein.1 The amount of Rubisco decreases rapidly in the early phase of leaf senescence, and more slowly in the later phase. During senescence, chloroplasts gradually shrink and their numbers gradually decrease in mesophyll cells.2,3 During leaf senescence, leaves lose approximately 75% of their Rubisco, while chloroplast numbers decrease by only about 15%.4 Previous studies showed chloroplasts localized within the central vacuole by electron microscopy, indicating chloroplast degradation in the highly hydrolytic vacuole.5 However, there was no direct evidence showing translocation of chloroplasts from the cytosol to the vacuole, and the mechanism of transportation was also unclear.Recent reverse genetic approaches are helping to elucidate the autophagy system in plants, which has a similar molecular mechanism as in yeast.611 In Arabidopsis (Arabidopsis thaliana), atg mutants have phenotypically accelerated leaf senescence, insufficient root elongation in nutrient starvation condition and reduced seeds yields, therefore, autophagy is considered to be important for nutrient recycling especially nutrient starvation and senescence in plants.12In Arabidopsis, individually darkened rosette leaves (IDLs) exhibit enhanced senescence.13 Appling IDLs treatment as an experimental model of leaf senescence, we recently demonstrated that chloroplasts are degraded in two different pathways by autophagy, one for RCBs,14,15 and one for whole chloroplast.16 Darkened leaves became pale in 3 to 5 days treatment, while illuminated parts normally grow in both wild-type and autophagy defective mutant, atg4a4b-1. Furthermore, genes specifically expressed during senescence, SAG12 and SEN1, were rapidly upregulated, meanwhile, photosynthetic genes, such as RBCS2B and CAB2B, were gradually downregulated. All analyzed ATG genes were also upregulated under IDL treatment, which suggests that autophagy is important in IDL senescence. It has been reported that approximately three quarter genes of upregulated in IDL were also upregulated in naturally senescing leaves, including the ATG genes.17 This suggests that the autophagy pathways used in IDLs are also used in naturally senescing leaves.Over the 5 day treatment period, chloroplasts of wild-type IDL shrink to approximately one third their original size. In atg4a4b-1, by contrast, chloroplasts shrinkage occurred immediately after the start of IDL treatment after which no further shrinkage was noted. While the shrunk chloroplasts in fixed cells of wild-type were still smooth and round, while wrinkly chloroplasts were observed in atg4a4b-1. At same time, in the living mesophyll cells of wild-type IDL, RCBs accumulated in the vacuole (Fig 1B). The shrinkage of chloroplasts may be due to the consumption of the chloroplast envelope by RCB formation. Immunological quantification of inner and outer envelope proteins might confirm this hypothesis. The chloroplast number was also gradually decreased in IDL of wild-type plants, but no decline in chloroplast number was noted in atg4a4b-1. Chloroplasts exhibiting chlorophyll auto-fluorescence were found in the vacuole of wild-type IDLs, but not in atg4a4b-1 IDLs. These results show that whole chloroplast degradation is also performed by autophagy. However, the transport pathway of whole chloroplasts into the vacuole remains unclear. The chloroplast, even in its shrunken state, is a large organelle, and the autophagosome, the carrier bodies of autophagy, which usually target small spherical organelles like mitochondria and peroxisomes, may be incapable of isolating large organelles. In the yeast autophagy system, specific cellular organelles and fractions are also transported via vacuolar membrane invagination using the microautophagy system.18 RCB uptake into the vacuole is termed macroautophagy, while larger organelles, such as chloroplasts, are engulfed in a process known as microautophagy. Whether there exists a molecular difference between these processes, or whether this is an arbitrary division based solely on the size of the consumed body is unclear.Open in a separate windowFigure 1Visualization of stroma-targeted DsRed and chlorophyll autofluorescence in living mesophyll cells of wild-type plants by laser-scanning confocal microscopy. A excised control leaf (A, Light) and an individually darkened leaf (B, IDL) from plants grown under 14 h-photoperiod condition and a leaf from whole-plant darkened condition (WD, C) for 5days were incubated with 1 µM concanamycin A in 10 mM MES-NaOH (pH 5.5) at 23C° for 20 h in darkness. Stroma-targeted DsRed appears green and chlorophyll fluorescence appears red. In merged images, overlap of DsRed and chlorophyll fluorescence appears yellow. Small vesicles with stromal-targeted DsRed, i.e. RCBs, can be found in the vacuole (A, B). In IDL (B), massive accumulation of stroma-targeted DsRed is entirely seen in the vacuolar lumen and chloroplasts losing DsRed fluorescence are found in some cells. Bars = 50 µm.Whole darkened plants exhibit retarded leaf aging, in contrast to the accelerated senescence in IDLs.13 Whole darkened plants suppress leaf senescence with the leaves retaining green color. After 5 days, in the mesophyll cells of whole darkened plants, any translocation of chloroplast components, stroma-targeted DsRed, RCBs, and whole chloroplasts, into the vacuole could hardly be detected (Fig. 1C). This suggests that autophagy is not induced by darkness alone, and is associated closely with senescence. ATG genes were downregulated in the whole darkened wild-type plants less than control plants during the treatment. Previous studies have shown that following about 5 day period of whole plant darkening, atg mutants lose their ability to protect themselves against photo-damage.7 Upon return to the light, these plant quickly undergo terminal photo-bleaching.Concentrations of chlorophyll, soluble protein, leaf nitrogen and Rubisco rapidly declined under IDL condition of both wild-type and atg4a4b-1. Considering the accumulated fluorescence of stroma-targeted Ds-Red in the vacuole and autophagy dependent size shrinkage of chloroplasts in IDL, in wild-type plants RCB autophagy appear to be responsible for a sizable proportion of chloroplast protein degradation. In atg4a4b-1 which cannot form RCBs, alternative degradation pathways must be upregulated, with chloroplast proteases the most likely candidates. Intriguingly, the decrease in Rubisco concentration proceeds at the almost identical rates in both wild-type and atg4a4b-1 plants, despite the different degradation pathways. It seems likely that the rate of Rubisco degradation may be regulated at an early step in the degradation pathway, by some, as yet unknown, factors.Chloroplasts appear to have the ability to control their volume during cell division, dividing and increasing their density up to the certain level,19 and transferring their cellular components between them via stromules.20 How chloroplasts are able to regulate their volume remains unclear, but it seems likely that chloroplasts grow and divide, like any other bacteria, as long as sufficient resources remain in the environment, in this case the cell. Total chloroplast volume, therefore, may be limited by the availability of carbon, nitrogen, or other nutrients in the cell during leaf emergence. Chloroplasts may be also able to reduce and control their volumes during leaf senescence via multiple degradation pathways. Our next goal is to estimate the contribution of both RCBs and whole chloroplasts autophagy in chloroplast protein degradation during natural leaf senescence. Further investigations are required for understanding the specific molecular mechanisms of RCB production and whole chloroplast degradation.  相似文献   

17.
Autophagy is a lysosomal degradation system by which cytosolic materials and damaged organelles are broken down into basic components. To explore the physiological role of autophagy in glomerular endothelial cells (GEnCs), we compared the autophagic flux among cells in the kidney under starvation. Inhibition of autophagy by chloroquine administration significantly increased the number of autophagosomes or autolysosomes in GEnCs and proximal tubular cells, but not in podocytes, suggesting that the GEnCs exhibit substantial autophagic activity. Next, we analyzed endothelial and hematopoietic cell-specific atg5-deficient mice (atg5-conditional KO [cKO] mice). Glomeruli of 4-wk-old atg5-cKO mice exhibited slightly distended capillary loops accompanied by an accumulation of reactive oxygen species (ROS). Glomeruli of 8-wk-old atg5-cKO mice showed a lobular pattern with thickening of the capillary loops and mesangial matrix expansion; however, the vasculature of other organs was preserved. The atg5-cKO mice died by 12 wk of age, presumably due to pancytopenia resulting from the defect in their hematopoietic lineages. Therefore, we subjected 4-wk atg5-cKO mice to irradiation followed by bone marrow transplantation from normal littermates. Transplanted mice recapitulated the glomerular phenotypes of the atg5-cKO mice with no obvious histological changes in other organs. Twelve-mo-old transplanted mice developed mesangiolysis and glomerulosclerosis with significant deterioration of kidney function. Administration of N-acetyl-l-cysteine, a ROS scavenger, to atg5-cKO mice rescued the glomerular phenotypes. These data suggest that endothelial autophagy protects glomeruli from oxidative stress and maintains the integrity of glomerular capillaries. Enhancing endothelial autophagy may provide a novel therapeutic approach to minimizing glomerular diseases.  相似文献   

18.
Peroxisomes house critical metabolic reactions that are essential for seedling development. As seedlings mature, metabolic requirements change, and peroxisomal contents are remodeled. The resident peroxisomal protease LON2 is positioned to degrade obsolete or damaged peroxisomal proteins, but data supporting such a role in plants have remained elusive. Arabidopsis thaliana lon2 mutants display defects in peroxisomal metabolism and matrix protein import but appear to degrade matrix proteins normally. To elucidate LON2 functions, we executed a forward-genetic screen for lon2 suppressors, which revealed multiple mutations in key autophagy genes. Disabling core autophagy-related gene (ATG) products prevents autophagy, a process through which cytosolic constituents, including organelles, can be targeted for vacuolar degradation. We found that atg2, atg3, and atg7 mutations suppressed lon2 defects in auxin metabolism and matrix protein processing and rescued the abnormally large size and small number of lon2 peroxisomes. Moreover, analysis of lon2 atg mutants uncovered an apparent role for LON2 in matrix protein turnover. Our data suggest that LON2 facilitates matrix protein degradation during peroxisome content remodeling, provide evidence for the existence of pexophagy in plants, and indicate that peroxisome destruction via autophagy is enhanced when LON2 is absent.  相似文献   

19.
Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.  相似文献   

20.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号