首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Phytohormones are central players in sensing and signalling numerous environmental conditions like drought. In this work, hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonate biosynthesis were studied in desiccating Arabidopsis roots. Jasmonic acid (JA) content transiently increased after stress imposition whereas progressive and concomitant ABA and Jasmonoyl Isoleucine (JA‐Ile) accumulations were detected. Molecular data suggest that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also point to a possible involvement of jasmonates on ABA biosynthesis under stress. To test this hypothesis, mutants impaired in jasmonate biosynthesis (opr3, lox6 and jar1‐1) and in JA‐dependent signalling (coi1) were employed. Results showed that the early JA accumulation leading to JA‐Ile build up was necessary for an ABA increase in roots under two different water stress conditions. Signal transduction between water stress‐induced JA‐Ile accumulation and COI1 is necessary for a full induction of the ABA biosynthesis pathway and subsequent hormone accumulation in roots of Arabidopsis plants. The present work adds a level of interaction between jasmonates and ABA at the biosynthetic level.  相似文献   

2.
Abscisic acid (ABA) applied exogenously at 100 μM prior to and during the salt-stress period induced salt tolerance in both the salt-susceptible (LPT123) and the genetically related salt-resistant (LPT123-TC171) rice lines, enhanced the survival rate by 20%, and triggered proline (Pro) accumulation earlier than that by salt-stress alone, supporting a role for Pro as an osmoprotectant. In both rice lines, salt-stress induced OsP5CS1 gene expression, suggesting that proline accumulation occurs via OsP5CS1 gene expression during salt stress. An increase in the endogenous ABA level was required for the induction of OsP5CS1 gene expression by salt stress. Under salt stress, topical ABA application-induced OsP5CS1 gene expression only in the salt-resistant line but up-regulated OsP5CR gene expression in both rice lines, suggesting that the increased proline accumulation and salt resistance induced by topical ABA application may result from the up-regulation of OsP5CR and not, directly at least, from OsP5CS1. Moreover, exogenous ABA application up-regulates OsCam1-1 (the salt-stress-responsive calmodulin) gene expression, and calmodulin was shown to play a role in the signal transduction cascade in proline accumulation during salt stress. These data suggest the role of the calmodulin signaling cascade and the induction of OsP5CR gene expression in proline accumulation by exogenous ABA application.  相似文献   

3.
4.
The effects of blue light (BL) and jasmonic acid (JA) on morphogenesis of Arabidopsis thaliana (L.) Heynh seedlings of genotypes Col and Ler and their mutants, namely, axr1-3 and jar1-1 mutants resistant to IAA and JA, respectively, and a CRY1 photoreceptor-deficient mutant hy4 were studied. Both 1 μM JA and BL exposure retarded hypocotyl growth of Ler, Col, and jar1-1 seedlings, whereas JA had no effect on hypocotyl growth of axr1-3, but the suppression of hypocotyl growth of this mutant by BL was even more noticeable than that of Ler, Col, and jar1-1. JA and BL applied simultaneously inhibited hypocotyl growth of axr1-3 and especially of Ler, Col, and jar1-1 more than either of factors applied separately. The hy4 mutant did not respond to BL, whereas JA stimulated its hypocotyl growth. JA did not change the cotyledon size of Col, axr1-3, and jar1-1 and reduced the cotyledon size of Ler and hy4. BL enhanced the cotyledon growth of all wild-type and mutant plants used in the study. The cotyledon sizes of all plants except Ler were also increased when JA and BL were applied together. Some of the growth responses correlated with the endogenous IAA and ABA contents. Thus, for example, the hypocotyl and cotyledon growth retardation of Ler seedlings in the presence of JA correlated with a reduced level of free IAA and a considerable increase in the free ABA level in plants grown both in darkness and in BL. Under other growth conditions, no correlation between the endogenous IAA and ABA levels and A. thaliana seedling growth was noted. The interaction between the signal transduction pathways triggered by BL and JA at the early stages of arabidopsis morphogenesis is discussed on the basis of Col, Ler, axr1-3, and jar1-1 hypocotyl growth responses.  相似文献   

5.
The effects of water stress and osmotic stress (sorbitol treatment) on the production of putrescine and proline in excised rice leaves were compared. Osmotic stress and water stress were found to affect differentially the levels of putrescine and proline in excised rice leaves. Putrescine accumulation is induced by osmotic stress, whereas proline accumulation is induced by water stress. The effects of ABA on the levels of proline and putrescine are similar to those of water stress, whereas the effects of jasmonic acid methyl ester (JA-Me) are similar to those of osmotic stress. Water stress results in an increase of endogenous ABA is excised rice leaves. However, neither osmotic stress nor JA-Me has effect on endogenous ABA levels in excised rice leaves. Of particular interest is the finding that proline levels increase when putrescine levels induced by osmotic stress or JA-Me are reduced by D-arginine and -methylornithine. L-arginine and L-ornithine applied exogenously also cause an increase in proline levels. It seems that L-arginine and L-ornithine are preferentially utilized as precursors for putrescine accumulation in excised rice leaves treated with osmotic stress and JA-Me, and for proline accumulation in excised rice leaves exposed to water stress and ABA.Abbreviations ABA abscisic acid - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - HPLC high performance chromatography - JA-Me jasmonic acid methyl ester - PVP poly-vinylpyrrolidone  相似文献   

6.
In Mesembryanthemum crystallinum, salt stress induces the accumulation of proline and a specific isoform of the enzyme phosphoenolpyruvate carboxylase (PEPCase) prior to the switch from C3 to Crassulacean acid metabolism (CAM). To determine whether plant growth regulators initiate or imitate these responses, we have compared the effects elicited by NaCl, abscisic acid (ABA), and cytokinins using PEPCase and proline levels as diagnostic tools. Exogenously applied ABA is a poor substitute for NaCl in inducing proline and CAM-specific PEPCase accumulation. Even though ABA levels increase 8- to 10-fold in leaves during salt stress, inhibition of ABA accumulation does not affect these salt-induced responses. In contrast, the addition of cytokinins (6-benzylaminopurine, zeatin, 2-isopentyladenine) mimic salt by greatly increasing proline and PEPCase amounts. Endogenous zeatin levels remain unchanged during salt stress. We conclude: (a) The salt-induced accumulation of proline and PEPCase is coincident with, but is not attributable to, the rise in ABA or zeatin concentration. (b) For the first time, cytokinins and NaCl are implicated as independent initiators of a sensing pathway that signals leaves to alter PEPCase gene expression. (c) During stress, the sensing of osmotic imbalances leading to ABA, proline, and CAM-specific PEPCase accumulation may be mediated directly by NaCl.  相似文献   

7.
The purpose of the study was to examine water stress-induced changes in the ABA and proline contents in roots and leaves of a potentially more resistant wild accession of Hordeum spontaneum and the modern cultivar Maresi (Hordeum vulgare). Leaves of H. spontaneum had higher contents of constitutive ABA and proline in comparison to those of ‘Maresi’. A moderate water deficit resulted only in root dehydration, which was higher in ‘Maresi’. Increases of water deficit in roots coincided with an increase of ABA content in roots, followed by that in leaves. The level of proline increased only in leaves and only in the case of H. spontaneum. Under conditions of severe water stress, the root dehydration levels were similar in the both genotypes, whereas leaf dehydration was higher in ‘Maresi’. H. spontaneum, as compared to ‘Maresi’ showed an earlier increase of ABA content in the roots and accumulated more ABA in the leaves. Free proline levels in the roots increased in both genotypes but H. spontaneum exhibited a 2-fold higher proline accumulation than ‘Maresi’. In H. spontaneum the accumulation of proline in the leaves occurred noticeably earlier and to a higher extent than in ‘Maresi’. A possible connection of these modifications with water stress resistance of the investigated genotypes is discussed in this paper.  相似文献   

8.
The effects of ABA treatment on the contents of proline, polyamines (PA), and cytokinins (CK) in the facultative halophyte the common ice plant (Mesembryanthemum crystallinum L.) subjected to salt stress were studied. Plants grown in the phytotron chamber on Jonson nutrient medium for 6 weeks were subjected to 6-day-long salinity by a single NaCl adding to medium. During first three days of salinity, half plants of each treatment were placed for 30 min on nutrient medium containing 0, 100, or 300 mM NaCl plus ABA in the final concentration of 1 μM. Salinity reduced biomass accumulation and water and chlorophyll contents in plants. This was accompanied by the increase in the levels of MDA, proline, and sodium ions. ABA treatment of salt-stressed plants favored biomass accumulation and photosynthetic pigment protection, reduced the intensity of oxidative stress and the level of NaCl-induced proline accumulation. ABA treatment increased the contents of putrescine (Put) and spermidine (Spd) in the leaves and roots of control plants (not subjected to salt stress), reduced the losses of Put in the leaves and roots and Spd in the roots in the presence of 100 mM NaCl, and suppressed cadaverine (Cad) accumulation in the roots in the presence of 300 mM NaCl. In the presence of NaCl, ABA reduced the contents of zeatin and zeatin riboside and increased the level of zeatin-O-glucoside in the roots and isopentenyladenosine and isopentenyladenine in the leaves. Thus, ABA protective action under salinity can be realized through the weakening of oxidative stress (a decrease in MDA content) and the regulation of PA, proline, and CK metabolism, which has a great significance in plant adaptation to injurious factors.  相似文献   

9.
Proline accumulation and mobilization in roots of 7-d-old seedlings of wheat genotypes varying in sensitivity towards water stress were compared. Water stress was induced by polyethylene glycol (PEG-6000; osmotic potential −1.5 MPa) in the presence of 0.1 mM abscisic acid (ABA), 1 mM calcium chloride, 0.5 mM verapamil (Ca2+ channel blocker), 0.5 mM fluridone (inhibitor of ABA biosynthesis). While both the genotypes did not differ in total proline accumulation, rate of proline accumulation and utilization was higher in tolerant genotype C 306 as compared to susceptible genotype HD 2380. The treatment with ABA and CaCl2 caused further increase in proline accumulation during stress and reduced its mobilization during recovery. The membrane stability and elongation rate of roots was observed to be higher at ABA and calcium treatment in both the genotypes under stress. As was evident from inhibitor studies, the tolerant genotype was more responsive to ABA and the susceptible one to calcium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In this study, we examined the influence of UV-B radiation (280–320 nm) on ABA accumulation in 14-day-old Arabidopsis thaliana (L.) Heynh plants of wild type (WT), ethylene receptor mutant (etr1-1), and mutant with a constitutively active ethylene signal transduction pathway (ctr1-1). ABA content in nonirradiated WT plants was twice higher than in each mutant. UV-B irradiation caused dose-dependent ABA accumulation in WT plants. In the etr1-1 mutant, the amount of accumulated ABA was significantly less. In the ctr1-1 mutant, ABA content didn’t increase after UV-B irradiation. These data suggest that start of stress-induced ABA formation requires the adjustable ethylene signal pathway. In the ctr1-1 mutant, a constitutively active (nonadjustable) ethylene signal pathway blocks stress-induced ABA accumulation.  相似文献   

11.
12.
When excised second leaves from 2-week-old barley (Hordeum vulgare var Larker) plants were incubated in a wilted condition, abscisic acid (ABA) levels increased to 0.6 nanomole per gram fresh weight at 4 hours then declined to about 0.3 nanomole per gram fresh weight and remained at that level until rehydrated. Proline levels began to increase at about 4 hours and continued to increase as long as the ABA levels were 0.3 nanomole per gram fresh weight or greater. Upon rehydration, proline levels declined when the ABA levels fell below 0.3 nanomole per gram fresh weight.

Proline accumulation was induced in turgid barley leaves by ABA addition. When the amount of ABA added to leaves was varied, it was observed that a level of 0.3 nanomole ABA per gram fresh weight for a period of about 2 hours was required before proline accumulation was induced. However, the rate of proline accumulation was slower in ABA-treated leaves than in wilted leaves at comparable ABA levels. Thus, the threshold level of ABA for proline accumulation appeared to be similar for wilted leaves where ABA increased endogenously and for turgid leaves where ABA was added exogenously. However, the rate of proline accumulation was more dependent on ABA levels in turgid leaves to which ABA was added exogenously than in wilted leaves.

Salt-induced proline accumulation was not preceded by increases in ABA levels comparable to those observed in wilted leaves. Levels of less than 0.2 nanomole ABA per gram fresh weight were measured 1 hour after exposure to salt and they declined rapidly to the control level by 3 hours. Proline accumulation commenced at about 9 hours. Thus, ABA accumulation did not appear to be involved in salt-induced proline accumulation.

  相似文献   

13.
14.
Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more [35S]cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.  相似文献   

15.
16.
The effects of ABA treatment on the contents of polyamines (PAs) and proline (Pro) in the glycophyte Phaseolus vulgaris L. during plant adaptation to salt stress were studied. Two-week-old common bean seedlings grown in the phytotron chamber on the Jonson nutrient medium were subjected to salinity for 6 days by one-time NaCl addition to medium up to final concentrations of 50 and 100 mM. During first three days of salinity, the root system was daily treated with ABA (1, 5, 10, or 50 μM) for 30 min. Salt stress (100 mM NaCl) elevated the level of endogenous ABA, increased the content of Pro 14-fold, reduced sharply the content of free PAs (putrescine, spermidine, spermine, and cadaverine), and the accumulation of 1,3-diaminopropan, a product of oxidation of high-molecular PAs. Common bean plant treatment with 1 μM ABA weakened the adverse effects of salt stress (100 mM NaCl), which was manifested in the maintenance of plant growth, stimulation of chlorophyll (a and b) and carotenoid accumulation, a stabilization of water and Na+ balance. Seedling treatment with ABA suppressed NaCl-induced Pro and intracellular ABA accumulation and restored the levels of putrescine and spermidine. The content of spermine in the leaves of plants subjected to salt stress and treated with ABA was approximately threefold higher than in control plants, whereas the content of cadaverine increased under similar conditions more than fivefold. Simultaneously, the contents of 1,3-diaminopropan and malondialdehyde as well as activity of superoxide dismutase were reduced, which indicates a weakening of oxidative stress, one of the possible causes of defensive ABA effects against salt stress. In addition, the suppression by exogenous ABA of Pro accumulation and stimulation of PA content under salt stress confirm indirectly our hypothesis that ABA is involved in the coordinated regulation of two biosynthetic pathways, Pro and PA formation, which use a common precursor, glutamate, and play an important protective role during stress in plants.  相似文献   

17.
Embryogenic callus of maize (Zea mays L.) inbreds B37wx, H99, H993H95, Mo17, and Pa91 accumulated proline to levels 2.1 to 2.5 times that of control callus when subjected to mannitol-induced water stress, cool temperatures (19°C) and abscisic acid (ABA). A combination of 0.53 molar mannitol plus 0.1 millimolar ABA induced a proline accumulation to about 4.5 times that of control callus, equivalent to approximately 0.18 millimoles proline per gram fresh weight of callus. Proline accumulation was directly related to the level of mannitol in the medium. Levels of ABA greater than 1.0 micromolar were required in the medium to induce proline accumulation comparable to that induced by mannitol. Mannitol and ABA levels that induced maximum accumulation of proline also inhibited callus growth and increased tolerance to cold. Proline (12 millimolar) added to the culture media also increased the tolerance of callus to 4°C. The increased cold tolerance induced by the combination of mannitol and ABA has permitted the storage of the maize inbreds A632, A634Ht, B37wx, C103DTrf, Fr27rhm, H99, Pa91, Va35, and W117Ht at 4°C for 90 days which is more than double the typical survival time of callus. These studies show that proline and conditions which induce proline accumulation increase the cold tolerance of regenerable maize callus.  相似文献   

18.
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na+ and Cl in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψw) decreased from an average value of approximately −1.0 MPa, measured on control plants and S10, to −1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g−1 fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.  相似文献   

19.
Reactive oxygen species (ROS) play an important role in NaCl stress. Plants tolerant to NaCl stress may evolve certain strategies to remove these ROS, thus reducing their toxic effects. Therefore, the expression patterns of the gene family encoding glutathione reductase (GR, EC 1.6.4.2) were analyzed in roots of etiolated rice (Oryza sativa L.) seedlings in response to NaCl stress. Semi-quantitative RT-PCR was applied to quantify the mRNA levels for one cytosolic (OsGR2) and two chloroplastic (OsGR1 and OsGR3) isoforms of glutathione reductase identified in the rice genome. The expression of OsGR2 and OsGR3 but not OsGR1 was increased in rice roots treated with 150 mM NaCl. The Rab16A is an abscisic acid (ABA)-responsive rice gene. Increasing concentrations of ABA, from 1 to 12 μM, progressively increased the expression of OsRab16A in rice roots. In the present study, the ABA level was judged by the expression of OsRab16A in rice roots. Treatment with 150 mM NaCl induced the expression of OsRab16A, and the expression increased with increasing concentrations of ABA, which suggests that ABA may be involved in this response in rice roots. In fact, exogenous application of ABA enhanced the expression of OsGR2 and OsGR3 in rice roots. On inhibiting ABA accumulation with sodium tungstate (Tu), an inhibitor of ABA biosynthesis, the expression of OsGR2 and OsGR3 was still induced by NaCl; therefore, NaCl-triggered expression of OsGR2 and OsGR3 in rice roots is not mediated by accumulation of ABA. However, NaCl treatment could induce H2O2 production in rice roots, and H2O2 treatment resulted in enhanced OsGR2 and OsGR3 induction. On inhibiting the NaCl-induced accumulation of H2O2 with diphenylene iodonium, the expression of OsGR2 and OsGR3 was also suppressed. Moreover, the increase in H2O2 level was prior to the induction of OsGR2 and OsGR3 in NaCl-treated rice roots. Thus, H2O2, but not ABA, is involved in regulation of OsGR2 and OsGR3 expression in NaCl-treated rice roots.  相似文献   

20.
The effect of salicylic acid on barley response to water deficit   总被引:2,自引:0,他引:2  
The effect of a moderate (PEG −0.75 MPa) and severe (PEG −1.5 MPa) water deficit on SA content in leaves and roots as well as the effect of pre-treatment with SA on reaction to water stress were evaluated in two barley genotypes — the modern cv. Maresi and a wild form of Hordeum spontaneum. Water deficit increased SA content in roots, whereas SA content in leaves did not change. The level of SA in the roots of control plants was about twofold higher in ‘Maresi’ than in H. spontaneum. After 6 hours of a moderate stress the level of SA increased about twofold in H. spontaneum and about two and a half-fold in ‘Maresi’. Under severe stress conditions the level of SA increased about twofold in the both genotypes, but not before 24 hrs of the stress. Plant treatment with SA before stress reduced a damaging action of water deficit on cell membrane in leaves. A protective effect was more noticeable in H. spontaneum than in ‘Maresi’. SA treatment increased ABA content in the leaves of the studied genotypes. An increase of proline level was observed only in H. spontaneum. The obtained results suggest that ABA and proline can contribute to the development of antistress reactions induced by SA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号