首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secretin, a gut-brain peptide, elicited cyclic AMP production in a clone of neuroblastoma cells derived from the C1300 mouse tumor. Adenylate cyclase (EC 4.6.1.1) in plasma membranes from these cells was stimulated by secretin greater than vasoactive intestinal peptide greater than peptide histidine isoleucine amide, but not by the related peptides glucagon, gastric inhibitory polypeptide, or human growth hormone releasing factor. Hill coefficients for stimulation approximated one and the response to submaximal peptide concentrations was additive, as expected for hormones competing for a single receptor associated with the enzyme. Binding of 125I-labeled secretin to the neuroblastoma plasma membranes was saturable, time-dependent, and reversible. The KD determined from kinetic and equilibrium binding studies approximated 1 nM. The binding site displayed marked ligand specificity that paralleled that for stimulation of adenylate cyclase. The secretin receptor was regulated by guanine nucleotides, with guanosine 5'-(beta, gamma-imino)-triphosphate being the most potent to accelerate the rate of dissociation of bound secretin. These findings demonstrate the functional association of the secretin receptor with adenylate cyclase in neuronally derived cells.  相似文献   

2.
Secretin Stimulates Cyclic AMP Formation in the Rat Brain   总被引:2,自引:0,他引:2  
The effects of secretin on cyclic AMP levels in the rat brain were determined. Incubation of rat brain frontal cortex slices with secretin or the structurally related peptides peptide histidine leucine (PHI) or vasoactive intestinal polypeptide (VIP) in the presence of 10 mM theophylline resulted in a dose-dependent increase in the cyclic AMP levels. The half-maximal increase in cyclic AMP occurred using a 1 microM dose of secretin or a 2 microM dose of PHI or VIP. Preincubation of slices with secretin-(5-27) produced a dose-dependent inhibition of the secretin but not VIP- or PHI-stimulated increase in the cyclic AMP content. Also, in receptor binding studies, secretin-(5-27) produced a dose-dependent inhibition (Ki = 400 nM) of 125I-secretin but not of 125I-VIP binding to rat brain membranes. Guanyl-5'-yl imidodiphosphate decreased the affinity of radiolabelled secretin binding as a result of an increased rate of dissociation of bound 125I-secretin. These data suggest that secretin receptors in the rat brain may be coupled to adenylate cyclase in a stimulatory manner and that secretin-(5-27) may function as a central secretin receptor antagonist.  相似文献   

3.
4.
《Peptides》1998,19(6):1055-1062
The rabbit secretin receptor cDNA was cloned from rabbit pancreas using combined polymerase chain reaction (PCR)/rapid amplification of cDNA ends (PCR/RACE) approaches. The rabbit cDNA encoded 445 amino acids and had 80 and 85% homology with rat- and human receptor, respectively, in terms of nucleic and amino acid sequences. Several regions where the rabbit receptor sequence diverged from the rat/human receptor sequences were observed in the putative extracellular domains of the receptor. A cDNA coding for a similar sequence with a 76 bp deletion after the 5th transmembrane domain was also found; it probably encoded an inactive protein. The whole rabbit secretin receptor cDNA was subcloned in expression vector pCR3.1, then stably and transiently transfected in Chinese hamster ovary (CHO) cells. The pharmacological properties of the rat and rabbit secretin receptor studies were compared by radiolabeled secretin binding, binding inhibition, and adenylate cyclase activation (using secretin analogs and fragments). Porcine secretin was equipotent with rabbit secretin on the rabbit secretin receptor, but fivefold more potent than rabbit secretin on the rat receptor. This was due to the serine → arginine residue replacement, in position 16 of rabbit secretin. Amino terminal modified secretin analogs (secretin(2–27), [E3]secretin, [N3]secretin) and VIP were less potent than secretin on both secretin receptors, but more potent on the rabbit than on the rat receptor. The carboxy-terminally truncated fragment (1–26) had the same reduced potency on rat and rabbit receptors. Thus, the rabbit secretin receptor had original properties, different from those of the rat receptor.  相似文献   

5.
Understanding of the conformational changes in G protein-coupled receptors associated with activation and inactivation is of great interest. We previously used photoaffinity labeling to elucidate spatial approximations between photolabile residues situated throughout the pharmacophore of secretin agonist probes and this receptor. The aim of the current work was to develop analogous photolabile secretin antagonist probes and to explore their spatial approximations. The most potent secretin antagonist reported is a pseudopeptide ([psi(4, 5)]secretin) in which the peptide bond between residues 4 and 5 was replaced by a psi(CH(2)-NH) peptide bond isostere. We have developed a series of [psi(4, 5)]secretin analogs incorporating photolabile benzoyl phenylalanine residues in positions 6, 22, and 26. Each bound to the secretin receptor saturably and specifically, with affinity similar to their parental peptide. At concentrations with no measurable agonist activity, each probe covalently labeled the secretin receptor. Peptide mapping using proteolytic cleavage, immunoprecipitation, and radiochemical sequencing identified that each of these three probes labeled the amino terminus of the secretin receptor. Whereas the position 22 probe labeled the same residue as its analogous agonist probe and the position 6 probe labeled a residue within two residues of that labeled by its analogous agonist probe, the position 26 probe labeled a site 16 residues away from that labeled by its analogous agonist probe. Thus, whereas structurally related agonist and antagonist probes dock in the same general region of this receptor, conformational differences in active and inactive states result in substantial differences in spatial approximation at the carboxyl-terminal end of secretin analogs.  相似文献   

6.
1. This study aims (1) to determine whether secretin is synthesized centrally, specifically by the HPA axis and (2) to discuss, on the basis of the findings in this and previous studies, secretin's possible neuroregulatory role in autism. 2. An immunocytochemical technique with single-cell resolution was performed in 12 age/weight-matched male rats pretreated with stereotaxic microinjection of colchicine (0.6 microg/kg) or vehicle into the lateral ventricle. Following 2-day survival, rats were anesthetized and perfused for immunocytochemistry. Brain segments were blocked and alternate frozen 30-microm sections incubated in rabbit antibodies against secretin, vasoactive intestinal peptide, glucagon, or pituitary-adenylate-cyclase-activating peptide. Adjacent sections were processed for Nissl stain. Preadsorption studies were performed with members of the secretin peptide family to demonstrate primary antibody specificity. 3. Specificity of secretin immunoreactivity (ir) was verified by clear-cut preadsorption control data and relatively high concentrations and distinct topographic localization of secretin ir to paraventricular/supraoptic and intercalated hypothalamic nuclei. Secretin levels were upregulated by colchicine, an exemplar of homeostatic stressors, as compared with low constitutive expression in untreated rats. 4. This study provides the first direct immunocytochemical demonstration of secretinergic immunoreactivity in the forebrain and offers evidence that the hypothalamus, like the gut, is capable of synthesizing secretin. Secretin's dual expression by gut and brain secretin cells, as well as its overlapping central distribution with other stress-adaptation neurohormones, especially oxytocin, indicates that it is stress-sensitive. A neuroregulatory relationship between the peripheral and central stress response systems is suggested, as is a dual role for secretin in conditioning both of those stress-adaptation systems. Colchicine-induced upregulation of secretin indicates that secretin may be synthesized on demand in response to stress, a possible mechanism of action that may underlie secretin's role in autism.  相似文献   

7.
Although the existence of the receptor for secretin in the brain was suggested, the localization of secretin receptor and the neuronal function of secretin have not been clarified yet. In the present study, the localization of secretin receptor was investigated in the rat brain by using an in vitro autoradiography technique. Frozen section autoradiography with (125)I-secretin showed intense binding in the nucleus of solitary tract, laterodorsal thalamic nucleus, and accumbens nucleus; moderate binding in the hippocampus, caudate/putamen, cerebellum, cingulate and orbital cortices. Scatchard plot analysis gave the Kd value of 125 pM with Bmax of 134 fmol/mg tissue in the hippocampus. The binding specificity was confirmed with secretin and its analogs, VIP, PACAP, and glucagon. These results indicate the secretin receptor system might have some neural functions in the brain, which could give the basis for therapeutic use of secretin in autistic children.  相似文献   

8.
For the first time, the relationship between secretin and autism has been demonstrated by one of us. Intravenous administration of secretin in autistic children caused a fivefold higher pancreaticobiliary fluid secretion than in healthy ones and, at least in some of the patients, better mental functions were reported after the secretin test. Because the precise localization of secretin in the brain is still not completely known, the abovementioned observation led us to map secretin immunoreactivity in the nervous system of several mammalian species. In the present work, the distribution of secretin immunoreactivity in cat and human nervous systems was compared with that of rats using an immunohistochemical approach. Secretin immunoreactivity was observed in the following brain structures of both humans and in colchicine-treated rats: (1) Purkinje cells in the cerebellar cortex; (2) central cerebellar nuclei; (3) pyramidal cells in the motor cortex; and (4) primary sensory neurons. Additionally, secretin immnoreactive cells were observed in the human hippocampus and amygdala and in third-order sensory neurons of the rat auditory system. In cats, secretin was only observed in the spinal ganglia. Our findings support the view that secretin is not only a gastrointestinal peptide but that it is also a neuropeptide. Its presence or the lack of its presence may have a role in the development of behavioral disorders.  相似文献   

9.
Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suffers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT analogs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene analogs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTmeta) gave highest affinity (50?nM Ki), selectivity (34-fold), and agonist potency (34?nM EC50, 87-fold selectivity) towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V1a receptor subtype affinity (220?nM and 69?nM, respectively) and pharmacological activity (294?nM and 35?nM, respectively). V1a binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a neutral residue at position 8 with a basic amino acid, providing potent antagonists (14?nM IC50) that displayed no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability compared to OT at elevated temperature, demonstrating promising therapeutic potential for these analogs which warrants further study.  相似文献   

10.
Amino-terminal regions of secretin-family peptides contain key determinants for biological activity and binding specificity, although the nature of interactions with receptors is unclear. A helix N-capping motif within this region has been postulated to directly contribute to agonist activity while also stabilizing formation of a helix extending toward the peptide carboxyl terminus and docking within the receptor amino terminus. We used cysteine trapping to systematically explore spatial approximations between cysteines replacing each residue in this motif of secretin (sec), Phe6, Thr7, and Leu10, and cysteines incorporated into the extracellular face of the receptor. Each peptide was a full agonist for cAMP, but had a lower binding affinity than natural hormone. These bound to COS cells expressing 61 receptor constructs incorporating cysteines in every position along each extracellular loop (ECL) and adjacent parts of transmembrane (TM) segments. Patterns of covalent labeling were distinct for each probe, with Cys6-sec labeling multiple residues in the carboxyl-terminal half of ECL2 and throughout ECL3, Cys7-sec predominantly labeling only single residues in the carboxyl-terminal end of ECL2 and the amino-terminal end of ECL3, and Cys10-sec not efficiently labeling any of these residues. These spatial constraints were used to refine our model of secretin bound to its receptor, now bringing ECL3 above the amino terminus of the ligand and revealing possible charge-charge interactions between this part of secretin and receptor residues in TM5, TM6, ECL2, and ECL3, which can orient and stabilize the peptide-receptor complex. This was validated by testing predicted approximations by mutagenesis and residue-residue complementation studies.  相似文献   

11.
Glucose regulated protein 78 (GRP78) has been reported to be present on cell membranes of cancer cells but not the normal cells, serving as a potential anti-cancer target. In the present study, a fusion protein containing the GRP78 binding peptide WIFPWIQL and the active fragment of mung bean trypsin inhibitor was constructed, and its targeted anti-tumor effects were investigated both in vitro and in vivo. The results showed that the fusion protein specifically inhibited growth and induced apoptosis in colorectal cancer cells but not in the normal cells. Mechanistically, these anti-tumor effects were attributed to induction of G1 phase arrest and activation of multiple apoptotic pathways. Importantly, the fusion protein could also suppress the growth of xenografted human colorectal carcinoma in vivo. Our study reveals that this fusion protein may be developed as a therapeutic agent for treatment of colon cancer, and holds important implications for developing other anti-cancer peptide drugs.  相似文献   

12.
Secretin, a 27-amino acid neuropeptide, is a member of the glucagon/secretin/vasoactive intestinal polypeptide (VIP) superfamily of amphipathic peptides that elicits transient vasodilation in vivo. The purpose of this study was to determine whether association of human secretin with sterically stabilized phospholipid micelles (SSM) amplifies the vasorelaxant effects of the peptide in the peripheral microcirculation in vivo. We found that secretin in saline evoked significant concentration-dependent vasodilation in the intact hamster cheek pouch microcirculation (P < 0.05). This response was potentiated and prolonged significantly when secretin was associated with SSM (P < 0.05). Vasodilation evoked by secretin in saline and secretin in SSM was abrogated by VIP(10-28), a VIP receptor antagonist, but not by PACAP(6-38), a PACAP receptor antagonist, or Hoe140, a selective bradykinin B(2) receptor antagonist. Collectively, these data indicate that self-association of human secretin with SSM significantly amplifies peptide vasoreactivity in the intact peripheral microcirculation through activation of VIP receptors. We suggest that the vasoactive effects of human secretin in vivo are, in part, phospholipid-dependent.  相似文献   

13.
Secretin modulation of behavioral and physiological functions in the rat   总被引:2,自引:0,他引:2  
The effect of secretin on behavioral and physiological functions in the rat was investigated. Secretin injected intracerebroventricularly (ICV) significantly increased defecation and decreased novel-object approaches in rats. The peptide showed no significant effects on stereotypic behavior (gnawing, grooming and rearing), open-field locomotor activity however was significantly decreased, an effect that was probably due to a decreased propensity for the rats to initiate locomotor responses. In addition, secretin showed significant effects on respiration rate in anesthetized rats. When the peptide was injected in the lateral ventricle a decrease in respiration rate occurred, but when the brain was perfused from the lateral ventricle to the cisterna magna increases in respiration rate occurred. These data, combined with the facts that secretin and secretin receptors have been identified in the brain indicate that secretin may play a neurotransmitter or neuroregulator role in the central nervous system.  相似文献   

14.
The secretin receptor, a prototypic family B G protein-coupled receptor, forms a constitutive homodimeric complex that is stable even in the presence of hormone. Recently, a model of this agonist-bound receptor was built based on high resolution structures reported for amino-terminal domains of other family members. Although this model provided the best solution for all extant data, including 10 photoaffinity labeling constraints, a new such constraint now obtained with a position 16 photolabile probe was inconsistent with this model. As the secretin receptor forms constitutive homodimers, we explored whether secretin might dock across both protomers of the complex, an observation that could also contribute to the negative cooperativity observed. To directly explore this, we prepared six secretin analogue probes that simultaneously incorporated two photolabile benzoylphenylalanines as sites of covalent attachment, in positions known to label distinct receptor subdomains. Each bifunctional probe was a full agonist that labeled the receptor specifically and saturably, with electrophoretic migration consistent with labeling a single protomer of the homodimeric secretin receptor. No band representing radiolabeled receptor dimer was observed with any bifunctional probe. The labeled monomeric receptor bands were cleaved with cyanogen bromide to demonstrate that both of the photolabile benzoylphenylalanines within a single probe had established covalent adducts with a single receptor in the complex. These data are consistent with a model of secretin occupying a single secretin receptor protomer within the homodimeric receptor complex. A new molecular model accommodating all constraints is now proposed.  相似文献   

15.
A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.  相似文献   

16.
The recent suggestion that secretin may be useful in treating autism and schizophrenia has begun to focus attention on the mechanisms underlying this gut-brain peptide's actions in the central nervous system (CNS). In vitro autoradiographic localization of (125)I-secretin binding sites in rat brain shows the highest binding density in the nucleus tractus solitarius (NTS). Recent evidence suggests that intravenous infusion of secretin causes fos activation in NTS, a relay station playing important roles in the central regulation of autonomic functions. In this study, whole cell patch-clamp recordings were obtained from 127 NTS neurons in rat medullary slices. The mean resting membrane potential of these neurons was -54.7 +/- 0.3 mV, the mean input resistance was 3.7 +/- 0.2 GOmega, and the action potential amplitude of these neurons was always >70 mV. Current-clamp studies showed that bath application of secretin depolarized the majority (80.8%; 42/52) of NTS neurons tested, whereas the remaining cells were either unaffected (17.3%; 9/52) or hyperpolarized (1.9%; 1/52). These depolarizing effects were maintained in the presence of 5 microM TTX and found to be concentration dependent from 10(-12) to 10(-7) M. Using voltage-clamp techniques, we also identified modulatory actions of secretin on specific ion channels. Our results demonstrate that while secretin is without effect on net whole cell potassium currents, it activates a nonselective cationic conductance (NSCC). These results show that NTS neurons are activated by secretin as a consequence of activation of a NSCC and support the emerging view that secretin can act as a neuropeptide within the CNS.  相似文献   

17.
Vasoactive intestinal peptide (VIP) and secretin are two related peptides that activate adenylate cyclase on membranes of striatal neurons and glial cells from embryonic mouse brain grown in primary culture. On the two cell types, the maximal activation that could be induced by secretin was only 40% above basal activity, which represented less than 15% of the maximal effect obtainable with VIP. From competition experiments performed on glial cells and the neuroblastoma X glioma hybrid, NG 108-15, a cell line known to possess both VIP and secretin sensitive-adenylate cyclase, we demonstrate that secretin does not activate VIP receptors. Furthermore, secretin has an apparent high affinity (EC50 10(-8) M) for its receptors on striatal neurons and NG 108-15 whereas an apparent low affinity (EC50 7 X 10(-6) M) was found on striatal glial cells. This suggests the existence of either two distinct secretin receptors or a desensitized form.  相似文献   

18.
Lisenbee CS  Miller LJ 《Biochemistry》2006,45(27):8216-8226
Oligomerization of numerous G protein-coupled receptors has been documented, including the prototypic family B secretin receptor. The clinical significance of oligomerization of this receptor became clear with the recent observation that a misspliced form present in pancreatic cancer could associate with the wild-type receptor and act as a dominant negative inhibitor of its normal growth inhibitory function. Our goal was to explore the molecular mechanism of this interaction using bioluminescence (BRET) and fluorescence (FRET) resonance energy transfer and fluorescence microscopy with a variety of receptor constructs tagged with luciferase or cyan or yellow fluorescent proteins. BRET signals comparable to those obtained from cells coexpressing differentially tagged wild-type receptors were observed for similarly tagged secretin receptors in which all or part of the amino-terminal domain was deleted. As expected, neither of these constructs bound secretin, and only the partially truncated construct sorted to the plasma membrane. Receptors lacking the majority of the carboxyl-terminal domain, including that important for phosphorylation-mediated desensitization, also produced BRET signals above background. These findings suggested that the receptor's membrane-spanning core is responsible for secretin receptor oligomerization. Interestingly, alanine substitutions for a -GxxxG- helix interaction motif in transmembrane segment 7 created nonfunctional receptors that were capable of forming oligomers. Furthermore, treatment of receptor-expressing cells with brefeldin A did not eliminate the BRET signals, and morphologic FRET experiments confirmed the expected subcellular localizations of receptor oligomers. We conclude that secretin receptor oligomerization occurs through -GxxxG- motif-independent interactions of transmembrane segments during the maturation of nascent molecules.  相似文献   

19.
Adaptive exocrine pancreatic growth is mediated primarily by dietary protein and the gastrointestinal hormone cholecystokinin (CCK). Feeding trypsin inhibitors such as camostat (FOY-305) is known to induce CCK release and stimulate pancreatic growth. However, camostat has also been reported to stimulate secretin release and, because secretin often potentiates the action of CCK, it could participate in the growth response. Our aim was to test the role of secretin in pancreatic development and adaptive growth through the use of C57BL/6 mice with genetic deletion of secretin or secretin receptor. The lack of secretin in the intestine or the secretin receptor in the pancreas was confirmed by RT-PCR. Other related components, such as vasoactive intestinal polypeptide (VIP) receptors (VPAC(1) and VPAC(2)), were not affected. Secretin increased cAMP levels in acini from wild-type (WT) mice but had no effect on acini from secretin receptor-deleted mice, whereas VIP and forskolin still induced a normal response. Secretin in vivo failed to induce fluid secretion in receptor-deficient mice. The pancreas of secretin or secretin receptor-deficient mice was of normal size and histology, indicating that secretin is not necessary for normal pancreatic differentiation or maintenance. When WT mice were fed 0.1% camostat in powdered chow, the pancreas doubled in size in 1 wk, accompanied by parallel increases in protein and DNA. Camostat-fed littermate secretin and secretin receptor-deficient mice had similar pancreatic mass to WT mice. These results indicate that secretin is not required for normal pancreatic development or adaptive growth mediated by CCK.  相似文献   

20.
The non-ionic detergent n-octyl-beta-D-glucopyranoside was used to solubilize the VIP (vasoactive intestinal peptide) receptor from human colonic adenocarcinoma cell line HT29-D4. The binding of monoiodinated 125I-VIP to the solubilized receptor was specific, time-dependent, and reversible. Scatchard analysis of data obtained from competitive displacement of monoiodinated 125I-VIP by native VIP suggested the presence of two classes of VIP binding sites with Kd values of 0.32 and 46.7 nM. The binding capacities of these two classes were 1.7 x 10(10) and 30.2 x 10(10) sites/mg of proteins, respectively. The solubilized receptor retained the specificity of the human VIP receptor towards the peptides of the VIP/secretin/glucagon family. The order of potency in inhibiting monoiodinated 125I-VIP binding was VIP (IC50 = 1.0 x 10(-9) M) much greater than peptide histidine methionine amide (IC50 = 10(-7) M) greater than growth hormone-releasing factor (IC50 = 3 x 10(-7) M) greater than secretin (IC50 greater than 10(-6) M); glucagon had no effect on VIP binding. The reducing agent dithiothreitol inhibited in a dose-dependent manner the binding of 125I-VIP. Covalent cross-linking experiments between the solubilized receptor and 125I-VIP showed that after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography two major and one minor polypeptides of Mr 67,000, 72,000, and 83,000 were specifically labeled. When analyzed by gel filtration, the n-octyl-beta-D-glucopyranoside-solubilized 125I-VIP-receptor complex was resolved into two major peaks with molecular mass in the range of 60-70 and 270-300 kDa. Thus, the soluble form of the VIP receptor was probably a multimeric complex in which disulfide bonds may play an important role to hold the receptor in an active configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号