首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(6):1084-1093
The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application.  相似文献   

2.
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an ∼7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule''s disposition.  相似文献   

3.
《MABS-AUSTIN》2013,5(3):483-493
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an ~7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule's disposition.  相似文献   

4.
Engineering monoclonal antibodies (mAbs) with improved binding to the neonatal Fc receptor (FcRn) is a strategy that can extend their in vivo half-life and slow their systemic clearance. Published reports have predominantly characterized the pharmacokinetics of mAbs after intravenous administration. Recently, studies in mice suggest FcRn may also play a role in affecting the subcutaneous bioavailability of mAbs. Herein, we examined whether five mAbs engineered with the T250Q/M428L Fc mutations that improved their FcRn interactions, and subsequently their in vivo pharmacokinetics after intravenous administration, had improved subcutaneous bioavailability compared with their wild-type counterparts in cynomolgus monkeys. Similar to the intravenous administration findings, the pharmacokinetic profiles of our variant mAbs after subcutaneous injection showed improved half-life or clearance. In contrast, a clear effect was not observed on the subcutaneous bioavailability. We expect that while FcRn may play a role in determining mAb subcutaneous bioavailability, multiple biopharmaceutical and physiological factors are likely to influence the success of engineering strategies aimed at targeting this pathway for improving bioavailability.  相似文献   

5.
《MABS-AUSTIN》2013,5(2):267-273
Engineering monoclonal antibodies (mAbs) with improved binding to the neonatal Fc receptor (FcRn) is a strategy that can extend their in vivo half-life and slow their systemic clearance. Published reports have predominantly characterized the pharmacokinetics of mAbs after intravenous administration. Recently, studies in mice suggest FcRn may also play a role in affecting the subcutaneous bioavailability of mAbs. Herein, we examined whether five mAbs engineered with the T250Q/M428L Fc mutations that improved their FcRn interactions, and subsequently their in vivo pharmacokinetics after intravenous administration, had improved subcutaneous bioavailability compared with their wild-type counterparts in cynomolgus monkeys. Similar to the intravenous administration findings, the pharmacokinetic profiles of our variant mAbs after subcutaneous injection showed improved half-life or clearance. In contrast, a clear effect was not observed on the subcutaneous bioavailability. We expect that while FcRn may play a role in determining mAb subcutaneous bioavailability, multiple biopharmaceutical and physiological factors are likely to influence the success of engineering strategies aimed at targeting this pathway for improving bioavailability.  相似文献   

6.
Bispecific antibodies (BsAbs) can affect multiple disease pathways, thus these types of constructs potentially provide promising approaches to improve efficacy in complex disease indications. The specific and non-specific clearance mechanisms/biology that affect monoclonal antibody (mAb) pharmacokinetics are likely involved in the disposition of BsAbs. Despite these similarities, there are a paucity of studies on the in vivo biology that influences the biodistribution and pharmacokinetics of BsAbs. The present case study evaluated the in vivo disposition of 2 IgG-fusion BsAb formats deemed IgG-ECD (extracellular domain) and IgG-scFv (single-chain Fv) in cynomolgus monkeys. These BsAb molecules displayed inferior in vivo pharmacokinetic properties, including a rapid clearance (> 0.5 mL/hr/kg) and short half-life relative to their mAb counterparts. The current work evaluated factors in vivo that result in the aberrant clearance of these BsAb constructs. Results showed the rapid clearance of the BsAbs that was not attributable to target binding, reduced neonatal Fc receptor (FcRn) interactions or poor molecular/biochemical properties. Evaluation of the cellular distribution of the constructs suggested that the major clearance mechanism was linked to binding/association with liver sinusoidal endothelial cells (LSECs) versus liver macrophages. The role of LSECs in facilitating the clearance of the IgG-ECD and IgG-scFv BsAb constructs described in these studies was consistent with the minimal influence of clodronate-mediated macrophage depletion on the pharmacokinetics of the constructs in cynomolgus monkeys The findings in this report are an important demonstration that the elucidation of clearance mechanisms for some IgG-ECD and IgG-scFv BsAb molecules can be unique and complicated, and may require increased attention due to the proliferation of these more complex mAb-like structures.  相似文献   

7.
The importance of the neonatal Fc receptor (FcRn) in extending the serum half-life of monoclonal antibodies (mAbs) is well demonstrated, and has led to the development of multiple engineering approaches designed to alter Fc interactions with FcRn. Recent reports have additionally highlighted the effect of nonspecific interactions on antibody pharmacokinetics (PK), suggesting an FcRn-independent mechanism for mAb clearance. In this report we examine a case study of 2 anti-interleukin-12/23 antibodies, ustekinumab and briakinumab, which share the same target and Fc, but differ in variable region sequences. Ustekinumab displayed near baseline signal in a wide range of early stage developability assays for undesirable protein/protein interactions, while briakinumab showed significant propensity for self- and cross-interactions. This phenotypic difference correlates with faster clearance rates for briakinumab in both human FcRn transgenic and FcRn knockout mice. These findings support a dominant contribution for FcRn-independent clearance for antibodies with high nonspecificity, and highlight a key role for early stage developability screening to eliminate clones with such high nonspecific disposition PK.  相似文献   

8.
There are many factors that can influence the pharmacokinetics (PK) of a mAb or Fc-fusion molecule with the primary determinant being FcRn-mediated recycling. Through Fab or Fc engineering, IgG-FcRn interaction can be used to generate a variety of therapeutic antibodies with significantly enhanced half-life or ability to remove unwanted antigen from circulation. Glycosylation of a mAb or Fc-fusion protein can have a significant impact on the PK of these molecules. mAb charge can be important and variants with pI values of 1–2 unit difference are likely to impact PK with lower pI values being favorable for a longer half-life. Most mAbs display target mediated drug disposition (TMDD), which can have significant consequences on the study designs of preclinical and clinical studies. The PK of mAb can also be influenced by anti-drug antibody (ADA) response and off-target binding, which require careful consideration during the discovery stage. mAbs are primarily absorbed through the lymphatics via convection and can be conveniently administered by the subcutaneous (sc) route in large doses/volumes with co-formulation of hyaluronidase. The human PK of a mAb can be reasonably estimated using cynomolgus monkey data and allometric scaling methods.  相似文献   

9.
The MHC class I-like Fc receptor (FcRn) is an intracellular trafficking Fc receptor that is uniquely responsible for the extended serum half-life of antibodies of the IgG subclass and their ability to transport across cellular barriers. By performing these functions, FcRn affects numerous facets of antibody biology and pathobiology. Its critical role in controlling IgG pharmacokinetics has been leveraged for the design of therapeutic antibodies and related biologics. FcRn also traffics serum albumin and is responsible for the enhanced pharmacokinetic properties of albumin-conjugated therapeutics. The understanding of FcRn and its therapeutic applications has been limited by a paucity of reliable serological reagents against human FcRn. Here, we describe the properties of a new panel of highly specific monoclonal antibodies (mAbs) directed against human FcRn with diverse epitope specificities. We show that this antibody panel can be used to study the tissue expression pattern of human FcRn, to selectively block IgG and serum albumin binding to human FcRn in vitro and to inhibit FcRn function in vivo. This mAb panel provides a powerful resource for probing the biology of human FcRn and for the evaluation of therapeutic FcRn blockade strategies.Key words: FcRn, IgG, monoclonal antibody, albumin, therapy  相似文献   

10.
Monoclonal antibodies (mAbs) are a rapidly growing drug class for which great efforts have been made to optimize certain molecular features to achieve the desired pharmacokinetic (PK) properties. One approach is to engineer the interactions of the mAb with the neonatal Fc receptor (FcRn) by introducing specific amino acid sequence mutations, and to assess their effect on the PK profile with in vivo studies. Indeed, FcRn protects mAbs from intracellular degradation, thereby prolongs antibody circulation time in plasma and modulates its systemic clearance. To allow more efficient and focused mAb optimization, in vitro input that helps to identify and quantitatively predict the contribution of different processes driving non-target mediated mAb clearance in vivo and supporting translational PK modeling activities is essential. With this aim, we evaluated the applicability and in vivo-relevance of an in vitro cellular FcRn-mediated transcytosis assay to explain the PK behavior of 25 mAbs in rat or monkey. The assay was able to capture species-specific differences in IgG-FcRn interactions and overall correctly ranked Fc mutants according to their in vivo clearance. However, it could not explain the PK behavior of all tested IgGs, indicating that mAb disposition in vivo is a complex interplay of additional processes besides the FcRn interaction. Overall, the transcytosis assay was considered suitable to rank mAb candidates for their FcRn-mediated clearance component before extensive in vivo testing, and represents a first step toward a multi-factorial in vivo clearance prediction approach based on in vitro data.  相似文献   

11.
Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans. The present studies demonstrated: (1) minipig is predictive of human linear clearance; (2) the SC bioavailabilities in minipigs are weakly correlated with those in human; (3) minipig mAb SC absorption rates are generally higher than those in human and (4) the SC bioavailability appears to correlate with systemic clearance in minipigs. Given the important role of the neonatal Fc-receptor (FcRn) in the PK of mAbs, the in vitro binding affinities of these IgGs against porcine, human and cynomolgus monkey FcRn were tested. The result showed comparable FcRn binding affinities across species. Further, mAbs with higher isoelectric point tended to have faster systemic clearance and lower SC bioavailability in both minipig and human. Taken together, these data lend increased support for the use of the minipig as an alternative predictive model for human IV and SC PK of mAbs.Key words: mAb IgG, neonatal Fc receptor (FcRn), pharmacokinetics, subcutaneous bioavailability, animal model, minipig  相似文献   

12.
Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity. Subtle differences in the relative proportions of charge variants are often observed during routine biomanufacture or process changes and pose a challenge to demonstrating product comparability. To gain further insights into the impact on biological activity and pharmacokinetics (PK) of monoclonal antibody (mAb) charge heterogeneity, we isolated the major charge forms of a recombinant humanized IgG1 and compared their in vitro properties and in vivo PK. The mAb starting material had a pI range of 8.7–9.1 and was composed of about 20% acidic variants, 12% basic variants and 68% main peak. Cation exchange displacement chromatography was used to isolate the acidic, basic and main peak fractions for animal studies. Detailed analyses were performed on the isolated fractions to identify specific chemical modification contributing to the charge differences and were also characterized for purity and in vitro potency prior to being administered either subcutaneously (SC) or intravenously (IV) in rats. All isolated materials had similar potency and rat FcRn binding relative to the starting material. Following IV or SC administration (10 mg/kg) in rats, no difference in serum PK was observed, indicating that physiochemical modifications and pI differences among charge variants were not sufficient to result in PK changes. Thus, these results provided meaningful information for the comparative evaluation of charge-related heterogeneity of mAbs and suggested that charge variants of IgGs do not affect the in vitro potency, FcRn binding affinity or the PK properties in rats.Key words: mAb IgG1, charge heterogeneity, isoelectric point, neonatal Fc receptor (FcRn), pharmacokinetics, potency  相似文献   

13.
《MABS-AUSTIN》2013,5(5):942-955
ABSTRACT

A cell-based assay employing Madin–Darby canine kidney cells stably expressing human neonatal Fc receptor (FcRn) heavy chain and β2-microglobulin genes was developed to measure transcytosis of monoclonal antibodies (mAbs) under conditions relevant to the FcRn-mediated immunoglobulin G (IgG) salvage pathway. The FcRn-dependent transcytosis assay is modeled to reflect combined effects of nonspecific interactions between mAbs and cells, cellular uptake via pinocytosis, pH-dependent interactions with FcRn, and dynamics of intracellular trafficking and sorting mechanisms. Evaluation of 53 mAbs, including 30 marketed mAb drugs, revealed a notable correlation between the transcytosis readouts and clearance in humans. FcRn was required to promote efficient transcytosis of mAbs and contributed directly to the observed correlation. Furthermore, the transcytosis assay correctly predicted rank order of clearance of glycosylation and Fv charge variants of Fc-containing proteins. These results strongly support the utility of this assay as a cost-effective and animal-sparing screening tool for evaluation of mAb-based drug candidates during lead selection, optimization, and process development for desired pharmacokinetic properties.  相似文献   

14.
《MABS-AUSTIN》2013,5(6):613-624
Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity. Subtle differences in the relative proportions of charge variants are often observed during routine biomanufacture or process changes and pose a challenge to demonstrating product comparability. To gain further insights into the impact on biological activity and pharmacokinetics (PK) of monoclonal antibody (mAb) charge heterogeneity, we isolated the major charge forms of a recombinant humanized IgG1 and compared their in vitro properties and in vivo PK. The mAb starting material had a pI range of 8.7-9.1 and was composed of about 20% acidic variants, 12% basic variants, and 68% main peak. Cation exchange displacement chromatography was used to isolate the acidic, basic, and main peak fractions for animal studies. Detailed analyses were performed on the isolated fractions to identify specific chemical modification contributing to the charge differences, and were also characterized for purity and in vitro potency prior to being administered either subcutaneously (SC) or intravenously (IV) in rats. All isolated materials had similar potency and rat FcRn binding relative to the starting material. Following IV or SC administration (10 mg/kg) in rats, no difference in serum PK was observed, indicating that physiochemical modifications and pI differences among charge variants were not sufficient to result in PK changes. Thus, these results provided meaningful information for the comparative evaluation of charge-related heterogeneity of mAbs, and suggested that charge variants of IgGs do not affect the in vitro potency, FcRn binding affinity, or the PK properties in rats.  相似文献   

15.
Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.  相似文献   

16.
《MABS-AUSTIN》2013,5(5):912-921
Immunoglobulin G (IgG) has an unusually long serum half-life in comparison to proteins of a similar size. It is well-known that this phenomenon is due to IgG's ability to bind the neonatal Fc receptor (FcRn) in a pH-dependent manner. FcRn binding properties can vary among IgGs, resulting in altered in vivo half-lives, and therefore it would be beneficial to accurately predict the FcRn binding properties of therapeutic IgG monoclonal antibodies (mAbs). Here we describe the development of an in vitro model capable of predicting the in vivo half-life of human IgG. Using a high-throughput biolayer interferometry (BLI) platform, the human FcRn association rate at acidic pH and subsequent dissociation rate at physiological pH was determined for 5 human IgG1 mAbs. Comparing the combined FcRn association and dissociation rates to the Phase 1 clinical study half-lives of the mAbs resulted in a strong correlation. The correlation was also verified in vivo using mice transgenic for human FcRn. The model was used to characterize various factors that may influence FcRn-mAb binding, including mAb variable region sequence differences and constant region glycosylation patterns. Results indicated that the complementarity-determining regions of the heavy chain significantly influence the mAb's FcRn binding properties, while the absence of glycosylation does not alter mAb-FcRn binding. Development of this high-throughput FcRn binding model could potentially predict the half-life of therapeutic IgGs and aid in selection of lead candidates while also serving as a screening tool for the development of mAbs with desired pharmacokinetic properties.  相似文献   

17.
The neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. There are mixed reports on whether modification of the interaction with FcRn can be used as an engineering strategy to improve the pharmacokinetic and pharmacodynamic properties of monoclonal antibodies. We tested whether the T250Q/M428L mutations, which improved the pharmacokinetics of humanized IgGs in the rhesus monkey, would translate to a pharmacokinetic benefit in both cynomolgus monkeys and mice when constructed on a different humanized IgG framework (anti-tumor necrosis factor-alpha (TNFalpha)). The T250Q/M428L anti-TNFalpha variant displayed an approximately 40-fold increase in binding affinity to cynomolgus monkey FcRn (C-FcRn) at pH 6.0, with maintenance of the pH binding dependence. We also constructed another anti-TNFalpha variant (P257I/Q311I) whose binding kinetics with the C-FcRn was similar to that of the T250Q/M428L variant. The binding affinity of the T250Q/M428L variant for murine FcRn was increased approximately 500-fold, with maintenance of pH dependence. In contrast to the interaction with C-FcRn, this interaction was driven mainly by a decrease in the rate of dissociation. Despite the improved in vitro binding properties of the anti-TNFalpha T250Q/M428L and P257I/Q311I variants to C-FcRn, the pharmacokinetic profiles of these molecules were not differentiated from the wild-type antibody in cynomolgus monkeys after intravenous administration. When administered intravenously to mice, the T250Q/M428L anti-TNFalpha variant displayed improved pharmacokinetics, characterized by an approximately 2-fold slower clearance than the wild-type antibody. The discrepancy between these data and previously reported benefits in rhesus monkeys and the inability of these mutations to translate to improved kinetics across species may be related to a number of factors. We propose extending consideration to differences in the absolute IgG-FcRn affinity, the kinetics of the IgG/FcRn interaction, and differences in the relative involvement of this pathway in the context of other factors influencing the disposition or elimination of monoclonal antibodies.  相似文献   

18.
The neonatal Fc receptor (FcRn) has been demonstrated to contribute to a high bioavailability of monoclonal antibodies (mAbs). In this study, we explored the cellular sites of FcRn-mediated protection after subcutaneous (SC) and intravenous (IV) administration. SC absorption and IV disposition kinetics of a mAb were studied in hFcRn transgenic (Tg) bone marrow chimeric mice in which hFcRn was restricted to radioresistant cells or hematopoietic cells. SC bioavailabilities close to 90% were observed in hFcRn Tg mice and chimeric mice with hFcRn expression in hematopoietic cells, whereas SC bioavailabilities were markedly lower when FcRn was missing in hematopoietic cells. Our study demonstrates: 1) FcRn in radiosensitive hematopoietic cells is required for high SC bioavailability, indicating first-pass catabolism after SC administration by hematopoietic cells; 2) FcRn-mediated transcytosis or recycling by radioresistent cells is not required for high SC bioavailability; and 3) after IV administration hematopoietic and radioresistent cells contribute about equally to clearance of the mAb. A pharmacokinetic model was devised to describe a mixed elimination via radioresistent and hematopoietic cells from vascular and extravascular compartments, respectively. Overall, the study indicates a relevant role of hematopoietic cells for first-pass clearance of mAbs after SC administration and confirms their role in the overall clearance of mAbs.  相似文献   

19.
《MABS-AUSTIN》2013,5(2):243-255
Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans. The present studies demonstrated: (1) minipig is predictive of human linear clearance; (2) the SC bioavailabilities in minipigs are weakly correlated with those in human; (3) minipig mAb SC absorption rates are generally higher than those in human and (4) the SC bioavailability appears to correlate with systemic clearance in minipigs. Given the important role of the neonatal Fc-receptor (FcRn) in the PK of mAbs, the in vitro binding affinities of these IgGs against porcine, human and cynomolgus monkey FcRn were tested. The result showed comparable FcRn binding affinities across species. Further, mAbs with higher isoelectric point tended to have faster systemic clearance and lower SC bioavailability in both minipig and human. Taken together, these data lend increased support for the use of the minipig as an alternative predictive model for human IV and SC PK of mAbs.  相似文献   

20.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号