首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Detecting gene-gene interaction in complex diseases is a major challenge for common disease genetics. Most interaction detection approaches use disease-marker associations and such methods have low power and unknown reliability in real data. We developed and tested a powerful linkage-analysis-based gene-gene interaction detection strategy based on conditioning the family data on a known disease-causing allele or disease-associated marker allele. We computer-generated multipoint linkage data for a disease caused by two epistatically interacting loci (A and B). We examined several two-locus epistatic inheritance models: dominant-dominant, dominant-recessive, recessive-dominant, recessive-recessive. At one of the loci (A), there was a known disease-related allele. We stratified the family data on the presence of this allele, eliminating family members who were without it. This elimination step has the effect of raising the “penetrance” at the second locus (B). We then calculated the lod score at the second locus (B) and compared the pre- and post-stratification lod scores at B. A positive difference indicated interaction. We also examined if it was possible to detect interaction with locus B based on a disease-marker association (instead of an identified disease allele) at locus A. We also tested whether the presence of genetic heterogeneity would generate false positive evidence of interaction. The power to detect interaction for a known disease allele was 60–90%. The probability of false positives, based on heterogeneity, was low. Decreasing linkage disequilibrium between the disease and marker at locus A decreased the likelihood of detecting interaction. The allele frequency of the associated marker made little difference to the power.  相似文献   

3.
4.
The genetic loci that have been found by genome-wide association studies to modulate risk of coronary heart disease explain only a fraction of its total variance, and gene-gene interactions have been proposed as a potential source of the remaining heritability. Given the potentially large testing burden, we sought to enrich our search space with real interactions by analyzing variants that may be more likely to interact on the basis of two distinct hypotheses: a biological hypothesis, under which MI risk is modulated by interactions between variants that are known to be relevant for its risk factors; and a statistical hypothesis, under which interacting variants individually show weak marginal association with MI. In a discovery sample of 2,967 cases of early-onset myocardial infarction (MI) and 3,075 controls from the MIGen study, we performed pair-wise SNP interaction testing using a logistic regression framework. Despite having reasonable power to detect interaction effects of plausible magnitudes, we observed no statistically significant evidence of interaction under these hypotheses, and no clear consistency between the top results in our discovery sample and those in a large validation sample of 1,766 cases of coronary heart disease and 2,938 controls from the Wellcome Trust Case-Control Consortium. Our results do not support the existence of strong interaction effects as a common risk factor for MI. Within the scope of the hypotheses we have explored, this study places a modest upper limit on the magnitude that epistatic risk effects are likely to have at the population level (odds ratio for MI risk 1.3-2.0, depending on allele frequency and interaction model).  相似文献   

5.
We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study.  相似文献   

6.

Background

Evidence has accumulated that multiple genetic and environmental factors play important roles in determining susceptibility to type 2 diabetes (T2D). Although variants from candidate genes have become prime targets for genetic analysis, few studies have considered their interplay. Our goal was to evaluate interactions among SNPs within genes frequently identified as associated with T2D.

Methods/Principal Findings

Logistic regression was used to study interactions among 4 SNPs, one each from HNF4A[rs1884613], TCF7L2[rs12255372], WFS1[rs10010131], and KCNJ11[rs5219] in a case-control Ashkenazi sample of 974 diabetic subjects and 896 controls. Nonparametric multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) were used to confirm findings from the logistic regression analysis. HNF4A and WFS1 SNPs were associated with T2D in logistic regression analyses [P<0.0001, P<0.0002, respectively]. Interaction between these SNPs were also strong using parametric or nonparametric methods: the unadjusted odds of being affected with T2D was 3 times greater in subjects with the HNF4A and WFS1 risk alleles than those without either (95% CI = [1.7–5.3]; P≤0.0001). Although the univariate association between the TCF7L2 SNP and T2D was relatively modest [P = 0.02], when paired with the HNF4A SNP, the OR for subjects with risk alleles in both SNPs was 2.4 [95% CI = 1.7–3.4; P≤0.0001]. The KCNJ11 variant reached significance only when paired with either the HNF4A or WFSI SNPs: unadjusted ORs were 2.0 [95% CI = 1.4–2.8; P≤0.0001] and 2.3 [95% CI = 1.2-4.4; P≤0.0001], respectively. MDR and GMDR results were consistent with the parametric findings.

Conclusions

These results provide evidence of strong independent associations between T2D and SNPs in HNF4A and WFS1 and their interaction in our Ashkenazi sample. We also observed an interaction in the nonparametric analysis between the HNF4A and KCNJ11 SNPs (P≤0.001), demonstrating that an independently non-significant variant may interact with another variant resulting in an increased disease risk.  相似文献   

7.
The elusive but ubiquitous multifactor interactions represent a stumbling block that urgently needs to be removed in searching for determinants involved in human complex diseases. The dimensionality reduction approaches are a promising tool for this task. Many complex diseases exhibit composite syndromes required to be measured in a cluster of clinical traits with varying correlations and/or are inherently longitudinal in nature (changing over time and measured dynamically at multiple time points). A multivariate approach for detecting interactions is thus greatly needed on the purposes of handling a multifaceted phenotype and longitudinal data, as well as improving statistical power for multiple significance testing via a two-stage testing procedure that involves a multivariate analysis for grouped phenotypes followed by univariate analysis for the phenotypes in the significant group(s). In this article, we propose a multivariate extension of generalized multifactor dimensionality reduction (GMDR) based on multivariate generalized linear, multivariate quasi-likelihood and generalized estimating equations models. Simulations and real data analysis for the cohort from the Study of Addiction: Genetics and Environment are performed to investigate the properties and performance of the proposed method, as compared with the univariate method. The results suggest that the proposed multivariate GMDR substantially boosts statistical power.  相似文献   

8.
Bladder cancer is the 4th most common cancer among men in the U.S. We analyzed variant genotypes hypothesized to modify major biological processes involved in bladder carcinogenesis, including hormone regulation, apoptosis, DNA repair, immune surveillance, metabolism, proliferation, and telomere maintenance. Logistic regression was used to assess the relationship between genetic variation affecting these processes and susceptibility in 563 genotyped urothelial cell carcinoma cases and 863 controls enrolled in a case–control study of incident bladder cancer conducted in New Hampshire, U.S. We evaluated gene–gene interactions using Multifactor Dimensionality Reduction (MDR) and Statistical Epistasis Network analysis. The 3′UTR flanking variant form of the hormone regulation gene HSD3B2 was associated with increased bladder cancer risk in the New Hampshire population (adjusted OR 1.85 95%CI 1.31–2.62). This finding was successfully replicated in the Texas Bladder Cancer Study with 957 controls, 497 cases (adjusted OR 3.66 95%CI 1.06–12.63). The effect of this prevalent SNP was stronger among males (OR 2.13 95%CI 1.40–3.25) than females (OR 1.56 95%CI 0.83–2.95), (SNP-gender interaction P = 0.048). We also identified a SNP-SNP interaction between T-cell activation related genes GATA3 and CD81 (interaction P = 0.0003). The fact that bladder cancer incidence is 3–4 times higher in males suggests the involvement of hormone levels. This biologic process-based analysis suggests candidate susceptibility markers and supports the theory that disrupted hormone regulation plays a role in bladder carcinogenesis.  相似文献   

9.
Many popular methods for exploring gene-gene interactions, including the case-only approach, rely on the key assumption that physically distant loci are in linkage equilibrium in the underlying population. These methods utilize the presence of correlation between unlinked loci in a disease-enriched sample as evidence of interactions among the loci in the etiology of the disease. We use data from the CGEMS case-control genome-wide association study of breast cancer to demonstrate empirically that the case-only and related methods have the potential to create large-scale false positives because of the presence of population stratification (PS) that creates long-range linkage disequilibrium in the genome. We show that the bias can be removed by considering parametric and nonparametric methods that assume gene-gene independence between unlinked loci, not in the entire population, but only conditional on population substructure that can be uncovered based on the principal components of a suitably large panel of PS markers. Applications in the CGEMS study as well as simulated data show that the proposed methods are robust to the presence of population stratification and are yet much more powerful, relative to standard logistic regression methods that are also commonly used as robust alternatives to the case-only type methods.  相似文献   

10.
目的:探讨脑囊虫不同分期、分型的磁共振表现及应用价值。方法:收集脑囊虫病例127例,行MR轴、矢、冠位扫描及增强扫描。结果:脑囊虫分型:单发小囊型44例,单发大囊型6例,多发小囊型34例,脑实质钙化型18例;脑室型11例;蛛网膜下腔型7例;混合型7例。脑囊虫分期:活动期32例,退变死亡期49例,钙化期18例,混合期28例。结论:磁共振扫描能够清晰显示各种细节,是诊断脑囊虫的有力手段。  相似文献   

11.
Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated.  相似文献   

12.
The Interaction of Selection and Linkage. II. Optimum Models   总被引:29,自引:8,他引:21       下载免费PDF全文
R. C. Lewontin 《Genetics》1964,50(4):757-782
  相似文献   

13.
Although genome-wide association studies (GWAS) have identified a significant number of single-nucleotide polymorphisms (SNPs) associated with many complex human traits, the susceptibility loci identified so far can explain only a small fraction of the genetic risk. Among other possible explanations, the lack of a comprehensive examination of gene–gene interaction (G×G) is often considered a source of the missing heritability. Previously, we reported a model-free Generalized Multifactor Dimensionality Reduction (GMDR) approach for detecting G×G in both dichotomous and quantitative phenotypes. However, the computational burden and less efficient implementation of the original programs make them impossible to use for GWAS. In this study, we developed a graphics processing unit (GPU)-based GMDR program (named GWAS-GPU), which is able not only to analyze GWAS data but also to run much faster than the earlier version of the GMDR program. As a demonstration of the program, we used the GMDR-GPU software to analyze a publicly available GWAS dataset on type 2 diabetes (T2D) from the Wellcome Trust Case Control Consortium. Through an exhaustive search of pair-wise interactions and a selected search of three- to five-way interactions conditioned on significant pair-wise results, we identified 24 core SNPs in six genes (FTO: rs9939973, rs9940128, rs9922047, rs1121980, rs9939609, rs9930506; TSPAN8: rs1495377; TCF7L2: rs4074720, rs7901695, rs4506565, rs4132670, rs10787472, rs11196205, rs10885409, rs11196208; L3MBTL3: rs10485400, rs4897366; CELF4: rs2852373, rs608489; RUNX1: rs445984, rs1040328, rs990074, rs2223046, rs2834970) that appear to be important for T2D. Of these core SNPs, 11 in FTO, TSPAN8, and TCF7L2 have been reported to be associated with T2D, obesity, or both, providing an independent replication of previously reported SNPs. Importantly, we identified three new susceptibility genes; i.e., L3MBTL3, CELF4, and RUNX1, for T2D, a finding that warrants further investigation with independent samples.  相似文献   

14.
P. E. Neumann 《Genetics》1990,126(1):277-284
Recombinant inbred (RI) strains are useful in linkage analysis and gene mapping. The currently available statistical tests of linkage using data derived from the study of RI strains, including a previous Bayesian analysis, have not been stringent enough guides for conclusions about linkage. In this paper, the probability of linkage was estimated using Bayes' theorem. Tables are presented that give the probability of linkage in sets of up to 30 RI strains and the critical values of i (the number of recombinants) in sets of up to 100 RI strains. Several means of increasing the power of RI strains in linkage analysis are discussed.  相似文献   

15.
李宏 《生物数学学报》2007,22(4):605-612
该文分析了BC群体不同连锁模式分子区间标记QTL作图相关方法的精确度,提出了相应参数的适用范匿,连锁顺序的检测方法,分析步骤,为QTL作图提供了理论基础。  相似文献   

16.
Information available should always be considered in any statistical analysis. But it is also true that the good presentation and interpretability of the results should be aimed at. In this paper the research situation (kind of variables and theoretical relations between them) and good presentation and interpretability of graphical models are linked together.  相似文献   

17.
18.
19.
In a number of applications there is a need to determine the most likely pedigree for a group of persons based on genetic markers. Adequate models are needed to reach this goal. The markers used to perform the statistical calculations can be linked and there may also be linkage disequilibrium (LD) in the population. The purpose of this paper is to present a graphical Bayesian Network framework to deal with such data. Potential LD is normally ignored and it is important to verify that the resulting calculations are not biased. Even if linkage does not influence results for regular paternity cases, it may have substantial impact on likelihood ratios involving other, more extended pedigrees. Models for LD influence likelihoods for all pedigrees to some degree and an initial estimate of the impact of ignoring LD and/or linkage is desirable, going beyond mere rules of thumb based on marker distance. Furthermore, we show how one can readily include a mutation model in the Bayesian Network; extending other programs or formulas to include such models may require considerable amounts of work and will in many case not be practical. As an example, we consider the two STR markers vWa and D12S391. We estimate probabilities for population haplotypes to account for LD using a method based on data from trios, while an estimate for the degree of linkage is taken from the literature. The results show that accounting for haplotype frequencies is unnecessary in most cases for this specific pair of markers. When doing calculations on regular paternity cases, the markers can be considered statistically independent. In more complex cases of disputed relatedness, for instance cases involving siblings or so-called deficient cases, or when small differences in the LR matter, independence should not be assumed. (The networks are freely available at http://arken.umb.no/~dakl/BayesianNetworks.)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号