首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plants show leaf form alteration in response to changes in the surrounding environment, and this phenomenon is called heterophylly. Although heterophylly is seen across plant species, the regulatory mechanisms involved are largely unknown. Here, we investigated the mechanism underlying heterophylly in Rorippa aquatica (Brassicaceae), also known as North American lake cress. R. aquatica develops pinnately dissected leaves in submerged conditions, whereas it forms simple leaves with serrated margins in terrestrial conditions. We found that the expression levels of KNOTTED1-LIKE HOMEOBOX (KNOX1) orthologs changed in response to changes in the surrounding environment (e.g., change of ambient temperature; below or above water) and that the accumulation of gibberellin (GA), which is thought to be regulated by KNOX1 genes, also changed in the leaf primordia. We further demonstrated that exogenous GA affects the complexity of leaf form in this species. Moreover, RNA-seq revealed a relationship between light intensity and leaf form. These results suggest that regulation of GA level via KNOX1 genes is involved in regulating heterophylly in R. aquatica. The mechanism responsible for morphological diversification of leaf form among species may also govern the variation of leaf form within a species in response to environmental changes.  相似文献   

2.
3.
Subularia aquatica is a small annual aquatic plant in the family Brassicaceae with unique leaf morphology. Its anatomical features were studied using light microscopy. We show that the leaves of S. aquatica are bifacial dorsiventral phyllodes, having adaxial-abaxial polarity, rather than the alternative unifacial type. This morphology is also manifested in the collaterally arranged vascular bundles, which are clearly bifacial. The roots exhibit typical anatomical features of an aquatic plant, including prominent aerenchyma. Although unique within the Brassicaceae, S. aquatica displays many of the same morphological characteristics as other Isoetid life-forms.  相似文献   

4.
5.
The volatile organic compound (VOC) profile in plant leaves often changes after biotic and abiotic stresses. Monitoring changes in VOCs in plant leaves could provide valuable information about multitrophic interactions. In the current study, we investigated the effect of Asian citrus psyllid (ACP) infestation, citrus greening pathogen (Candidatus Liberibacter asiaticus [CLas]) infection, and simultaneous attack by ACP and CLas on the VOC content of citrus leaves. Leaf volatiles were extracted using hexane and analyzed with gas chromatography-mass spectrometry (GC-MS). Although ACP is a phloem-sucking insect that causes minimal damage to plant tissues, the relative amount of 21 out of the 27 VOCs increased 2- to 10-fold in ACP-infested plants. The relative amount of d-limonene, β-phelandrene, citronellal, and undecanal were increased 4- to 20- fold in CLas-infected plants. A principle component analysis (PCA) and cluster analysis (CA) showed that VOC patterns of ACP-infested and CLas-infected plants were different from each other and were also different from the controls, while the VOC pattern of double-attacked plants was more like that of the controls than that of ACP-infested or CLas-infected plants. VOC amounts from leaves were compromised when plants were attacked by ACP and CLas. The results of this study showed that a simple direct extraction of citrus leaf volatiles could be successfully used to discriminate between healthy and CLas-infected plants. Information about the effects of insect and pathogen attack on the VOC content profile of plants might contribute to a better understanding of biotic stress.  相似文献   

6.

Background

Heterophyllous aquatic plants show marked phenotypic plasticity. They adapt to environmental changes by producing different leaf types: submerged, floating and terrestrial leaves. By contrast, homophyllous plants produce only submerged leaves and grow entirely underwater. Heterophylly and submerged homophylly evolved under selective pressure modifying the species-specific optima for photosynthesis, but little is known about the evolutionary outcome of habit. Recent evolutionary analyses suggested that rbcL, a chloroplast gene that encodes a catalytic subunit of RuBisCO, evolves under positive selection in most land plant lineages. To examine the adaptive evolutionary process linked to heterophylly or homophylly, we analyzed positive selection in the rbcL sequences of ecologically diverse aquatic plants, Japanese Potamogeton.

Principal Findings

Phylogenetic and maximum likelihood analyses of codon substitution models indicated that Potamogeton rbcL has evolved under positive Darwinian selection. The positive selection has operated specifically in heterophyllous lineages but not in homophyllous ones in the branch-site models. This suggests that the selective pressure on this chloroplast gene was higher for heterophyllous lineages than for homophyllous lineages. The replacement of 12 amino acids occurred at structurally important sites in the quaternary structure of RbcL, two of which (residue 225 and 281) were identified as potentially under positive selection.

Conclusions/Significance

Our analysis did not show an exact relationship between the amino acid replacements and heterophylly or homophylly but revealed that lineage-specific positive selection acted on the Potamogeton rbcL. The contrasting ecological conditions between heterophyllous and homophyllous plants have imposed different selective pressures on the photosynthetic system. The increased amino acid replacement in RbcL may reflect the continuous fine-tuning of RuBisCO under varying ecological conditions.  相似文献   

7.
This research focused on studying how light and endogenous abscisic acid regulate leaf development in Hippuris vulgaris, a species of heterophyllic aquatic plant. Amounts of photosynthetically active radiation greater than 300 micromoles per square meter per second caused submerged H. vulgaris shoots to produce aerial-type leaves. Abscisic acid was not detected in shoots grown under noninducing light quantities (100 micromoles per square meter per second), but was present at 13.4 nanograms per gram fresh weight in shoot tips after plants were exposed to 1 photoperiod of inducing light (500 micromoles per square meter per second). This supports a role for abscisic acid in the high light-induced heterophylly in H. vulgaris, and provides additional support for the general hypothesis that abscisic acid regulates leaf development in heterophyllic aquatic plants. No relationship was observed here between postphotoperiodic light treatments of various red/far red ratios and heterophylly in H. vulgaris.  相似文献   

8.
In order to maintain organs and structures at their appropriate sizes, multicellular organisms orchestrate cell proliferation and post-mitotic cell expansion during morphogenesis. Recent studies using Arabidopsis leaves have shown that compensation, which is defined as post-mitotic cell expansion induced by a decrease in the number of cells during lateral organ development, is one example of such orchestration. Some of the basic molecular mechanisms underlying compensation have been revealed by genetic and chimeric analyses. However, to date, compensation had been observed only in mutants, transgenics, and γ-ray–treated plants, and it was unclear whether it occurs in plants under natural conditions. Here, we illustrate that a shift in ambient temperature could induce compensation in Rorippa aquatica (Brassicaceae), a semi-aquatic plant found in North America. The results suggest that compensation is a universal phenomenon among angiosperms and that the mechanism underlying compensation is shared, in part, between Arabidopsis and R. aquatica.  相似文献   

9.
Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant.Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field.Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot.Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source.  相似文献   

10.

Background and Aims

The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny.

Methods

Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape.

Key Results

The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species.

Conclusions

Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.  相似文献   

11.
Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA11 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host.  相似文献   

12.
13.
Ranunculus flabellaris Raf., the yellow water crowfoot, exhibitsstriking heterophylly between submerged and terrestrial leaves.Leaves produced under water are highly divided with numerousnarrow lobes and deep sinuses, whereas terrestrial leaves havefew broad lobes and shallow sinuses. When plants are submergedin a 25 µM solution of ABA, the typical transition fromterrestrial to submerged leaves is completely suppressed and,instead, terrestrial-like leaves are produced. Image analysistechniques show that, in addition to this modification of leafmorphology, leaves produced under ABA treatment possess surfaceand internal features characteristic of terrestrial leaf anatomy.This study provides evidence that the environmental factorsthat influence the morphological and anatomical expression ofheterophylly may act through endogenous ABA. Ranunculus flabellaris, yellow water crowfoot, ABA, heterophylly, leaf anatomy  相似文献   

14.
Background The cost–benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants.Scope This review summarizes results from the classical interpretation of the cost–benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost–benefit model.Conclusions Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.  相似文献   

15.
Inorganic phosphorus (Pi) is important in the regulation of many carbon and nitrogen metabolic processes of plants. In this study, we examined alterations of phosphomonoesterase activity (PA; both alkaline and acid) in a submersed marine angiosperm, Zostera marina, grown in Pi non-limiting conditions under elevated temperature and/or nitrate enrichment. Control plants (ambient water-column NO3 < 2.5 μM, with weekly mean water temperatures between 26.5-27.0 °C based on a 20-yr data set in a local embayment) were compared to treated plants that were exposed to increased water-column nitrate (8 μM NO3 above ambient, pulsed daily at 0900 h), and/or increased temperature (ca. 3 °C above weekly means) over eight weeks in late summer-fall. Under both nitrate regimes, increased temperature resulted in periodic increased leaf and root-rhizome tissue carbon content, and increased acid and alkaline PA activities (AcPAs and AlPAs, respectively). There was a positive correlation between AlPA and AcPA activities and sucrose synthase activities in belowground structures, and a negative correlation between AlPA activities and sucrose concentrations. There were also periodic changes in PA partitioning between carbon source and sink tissues. In high-temperature and high-nitrate treatments, AcPAs significantly increased in leaves relative to activities in root-rhizome tissues (up to 12-fold higher in aboveground than belowground tissues in as little as 3 weeks after initiation of treatments). These responses were not observed in control plants, which maintained comparable AcPA activities in above- and belowground tissues. In addition, AlPA activity was significantly higher in leaf than in root-rhizome tissues of plants in high-temperature (weeks 3 and 6) and high temperature combined with high nitrate treatments (week 8), relative to AlPA activities in control plants. The observed changes in PAs were not related to Pi growth limitation, and may allow Z. marina to alter its carbon metabolism during periods of increased carbon demand/mobilization. This response would make it possible for Z. marina to meet short-term P requirements to maximize carbon production/allocation. Such a mechanism could help to explain the variability in PA activities that has been observed for many plant species during periods when environmental Pi exceeds requirements for optimal growth.  相似文献   

16.
The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloë sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria, thereby driving the establishment of a characteristic bacterial community on such plants.  相似文献   

17.
3-Hydroxy-3-methylglutaryl-CoA reductase (HMG1) catalyzes the formation of mevalonic acid, the key intermediate of the cytosolic isoprenoid synthesis pathway. The parameters of stem and leaf growth were studied in the transgenic tobacco plants that express the HMG1 gene in both sense and antisense orientations towards the constitutive promoter. The transgenic plant height did not significantly differ from that of the control plants, though the plants carrying the sense copy of the HMG1 gene were considerably taller than plants that carried the antisense gene copy. Plants carrying an extra copy of the HMG1 gene were also characterized by increased leaf area. The number of mesophyll cells calculated per square unit of transgenic plants leaves was smaller than in the control plant leaves, though their volume was not considerably changed in any of the variants, suggesting changes in the cell packing density in leaves.  相似文献   

18.

Background and Aims

Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots.

Methods

Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer.

Key Results

Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females.

Conclusions

It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.  相似文献   

19.
Momokawa N  Kadono Y  Kudoh H 《Annals of botany》2011,108(7):1299-1306

Background and Aims

For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.

Methods

Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.

Key Results

Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.

Conclusions

R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.  相似文献   

20.
Species of the epiphytic fungus Pseudozyma are not pathogenic to plants and can be used as biocontrol agents against plant pathogens. Deciphering how they induce plant defense might contribute to their use for plant protection and expand our understanding of molecular plant–pathogen interactions. Here we show that Pseudozyma aphidis isolate L12, which is known to induce jasmonic acid- and salicylic acid-independent systemic resistance, can also activate local and systemic resistance in an ethylene-independent manner. We also show that P. aphidis localizes exclusively to the surface of the plant leaf and does not penetrate the mesophyll cells of treated leaves. We thus propose that P. aphidis acts via several mechanisms, and is an excellent candidate biocontrol agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号