首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher’s test (p-value ≤ 10-4)) was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPARα were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPARα, and 3) identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical-induced PPARα activity.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Stat5b gene disruption leads to an apparent growth hormone (GH) pulse insensitivity associated with loss of male-characteristic body growth rates and male-specific liver gene expression (Udy, G. B., Towers, R. P., Snell, R. G., Wilkins, R. J., Park, S. H., Ram, P. A., Waxman, D. J., and Davey, H. W. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 7239-7244). In the present study, disruption of the mouse Stat5a gene, whose coding sequence is approximately 90% identical to the Stat5b gene, resulted in no loss of expression in male mice of several sex-dependent, GH-regulated liver cytochrome P450 (CYP) enzymes. By contrast, the loss of STAT5b feminized the livers of males by decreasing expression of male-specific CYPs (CYP2D9 and testosterone 16alpha-hydroxylase) while increasing to female levels several female-predominant liver CYPs (CYP3A, CYP2B, and testosterone 6beta-hydroxylase). Since STAT5a is thus nonessential for these male GH responses, STAT5b homodimers, but not STAT5a-STAT5b heterodimers, probably mediate the sexually dimorphic effects of male GH pulses on liver CYP expression. In female mice, however, disruption of either Stat5a or Stat5b led to striking decreases in several liver CYP-catalyzed testosterone hydroxylase activities. Stat5a or Stat5b gene disruption also led to the loss of a female-specific, GH-regulated hepatic CYP2B enzyme. STAT5a, which is much less abundant in liver than STAT5b, and STAT5b are therefore both required for constitutive expression in female but not male mouse liver of certain GH-regulated CYP steroid hydroxylases, suggesting that STAT5 protein heterodimerization is an important determinant of the sex-dependent and gene-specific effects that GH has on the liver.  相似文献   

13.
14.
15.
New asthma drugs acting on gene expression   总被引:5,自引:1,他引:4  
  相似文献   

16.
17.
18.

Objective

Patients with type 2 diabetes and nonalcoholic fatty liver disease (NAFLD) have a higher prevalence of cardiovascular diseases. In this study we investigated the frequency of single nucleotide polymorphisms (SNPs) of several candidate genes associated with NAFLD in Taiwanese patients with type 2 diabetes mellitus (DM) and NAFLD and in those with DM but without fatty liver disease.

Methods

We enrolled 350 patients with type 2 DM and NAFLD and 209 patients with DM but without NAFLD. Body mass index (BMI), % body fat (% BF), glycated hemoglobin (HbA1c), high molecular weight (HMW) isoform of adiponectin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels were measured. Thirteen SNPs in 5 genes (adiponectin, leptin, peroxisome proliferator-activated receptor alpha, adiponutrin/patatin-like phospholipase domain-containing protein 3 and peroxisome proliferator-activated receptor γ co-activator 1α ) were measured.

Results

Only adiponectin rs266729 polymorphism was associated with susceptibility to NAFLD (p = 0.001). Subgroup analysis revealed that the proportion of subjects with homozygous genotype GG was higher in patients with NAFLD (31%) than in controls (11%) and that the proportions of heterozygous CG and homozygous CC were higher in controls (37% and 52%, respectively) than in patients with NAFLD (33% and 36%, respectively). Patients with NAFLD carrying the GG genotype of rs266729 showed significantly lower serum HMW adiponectin levels than patients carrying the GC or CC genotype (3.75±0.37 vs. 3.99±0.66 vs. 4.79±0.58 μg/ml, p< 0.001). Body fat and serum HMW adiponectin levels were the strongest predictors of developing NAFLD (p < 0.001 and 0.004, respectively).

Conclusions

In patients with type 2 diabetes gene polymorphism of adiponectin rs266729 is associated with risk of NAFLD. G allele of rs266729 is associated with hypoadiponectinemia. Low serum adiponectin level may precipitate liver steatosis in patients with type 2 diabetes.  相似文献   

19.
20.
Lipid droplet proteins (LDPs) coat the surface of triglyceride-rich lipid droplets and regulate their formation and lipolysis. We profiled hepatic LDP expression in fatty liver dystrophic (fld) mice, a unique model of neonatal hepatic steatosis that predictably resolves between postnatal day 14 (P14) and P17. Western blotting revealed that perilipin-2/ADRP and perilipin-5/OXPAT were markedly increased in steatotic fld liver but returned to normal by P17. However, the changes in perilipin-2 and perilipin-5 protein content in fld mice were exaggerated compared with relatively modest increases in corresponding mRNAs encoding these proteins, a phenomenon likely mediated by increased protein stability. Conversely, cell death-inducing DFFA-like effector (Cide) family genes were strongly induced at the level of mRNA expression in steatotic fld mouse liver. Surprisingly, levels of peroxisome proliferator-activated receptor γ, which is known to regulate Cide expression, were unchanged in fld mice. However, sterol-regulatory element binding protein 1 (SREBP-1) was activated in fld liver and CideA was revealed as a new direct target gene of SREBP-1. In summary, LDP content is markedly increased in liver of fld mice. However, whereas perilipin-2 and perilipin-5 levels are primarily regulated posttranslationally, Cide family mRNA expression is induced, suggesting that these families of LDP are controlled at different regulatory checkpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号