首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imran M  Mahmood S  Hussain R  Abid NB  Lone KP 《Gene》2012,492(1):186-194
Prion diseases are neurodegenerative conditions caused by misfolding of a normal host-encoded prion protein (PrPC) into pathogenic scrapie prion protein (PrPSc). In human prion diseases, the M129V prion protein polymorphism is known to confer susceptibility to the disease, determines PrPSc conformation and alters clinicopathological phenotypes. To date, all clinicopathologically confirmed cases of a variant form of Cruetzfeldt-Jacob disease (vCJD) have been 129MM homozygotes. There is also predominance of 129MM homozygotes in sporadic CJD (sCJD). No information regarding prion disorders is available from Pakistan. Although only invasive procedures like brain biopsy can confirm the diagnosis of prion disorders, testing a corresponding human population for variation in the prion protein gene (PRNP) may provide some insights into the presence of these disorders in a locality. The current study therefore aimed at exploring the genetic susceptibility of Pakistani population to CJD. A total of 909 unrelated individuals including 221 hemophiliacs representing all 4 major provinces of Pakistan were screened for M129V polymorphism and insertions or deletions of octapeptide repeats (OPRIs/OPRDs) using Polymerase Chain Reaction coupled with Restriction Fragment Length Polymorphism (PCR-RFLP). Concordance of the results of some PCR-RFLP reactions was also confirmed by dideoxy automated Sanger sequencing. The frequencies of M129V alleles (129M and 129V) and genotypes (129MM, 129MV and 129VV) were found in all 909 individuals to be 0.7101, 0.2899, 0.5270, 0.3663 and 0.1067, respectively. Deletion of 1 octapeptide repeat (1-OPRD) was detected in heterozygous state in PRNP of 10 individuals and in homozygous state in 1 individual. An insertion of 3 octapeptide repeats (3-OPRI) was found in 1 individual and an insertion of 1 octapeptide repeat (1-OPRI) in two individuals. Both 3-OPRI and 1-OPRI were present in heterozygous state and were linked to 129M allele. There were no significant χ2 differences between M129V allelic and genotypic frequencies of healthy individuals and hemophiliacs. However, M129V allelic and genotypic frequencies differed significantly between Pakistani population and East Asian and Western populations. Non-significant χ2 differences between M129V frequencies of healthy individuals and hemophiliacs suggest that individuals manifesting single gene disorders may provide naturally randomized samples for studies aiming at surveying the genetic variation. The combined excess of 129MM and 129VV homozygosity and the presence of 3-OPRI in 1 individual imply that Pakistani population is susceptible to prion disorders. Cases of prion disorders may exist in Pakistan, albeit at lower annual prevalence than other countries where life expectancy is greater than 65 years.  相似文献   

2.
《Seminars in Virology》1996,7(3):175-180
PrP genotypes of human prion diseases were closely related to deposition types of PrPSc, clinico-pathologic phenotypes and transmission rates to rodents. Wild type CJD with 129M/M, iatrogenic cases, and hereditary CJD with V1801, E200K, and M232R showed synaptic type deposition of PrPSc, similar phenotypes and, except for V1801, similar transmission rates. One patient with fatal familial insomnia transmitted the disease to mice. Plaque type deposition of PrPScinduced various phenotypes, such as GSS or Alzheimer's disease-like dementia, usually with a longer clinical course than CJD. Experimental transmission was positive from one-third of the cases with P102L but negative from other mutation cases with PrP plaques. Polymorphism at codon 129 may modify phenotypes as well as transmission rates.  相似文献   

3.
The clinicopathological phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD) correlate with the allelotypes (M or V) of the polymorphic codon 129 of the human prion protein (PrP) gene and the electrophoretic mobility patterns of abnormal prion protein (PrPSc). Transmission of sCJD prions to mice expressing human PrP with a heterologous genotype (referred to as cross-sequence transmission) results in prolonged incubation periods. We previously reported that cross-sequence transmission can generate a new prion strain with unique transmissibility, designated a traceback phenomenon. To verify experimentally the traceback of sCJD-VV2 prions, we inoculated sCJD-VV2 prions into mice expressing human PrP with the 129M/M genotype. These 129M/M mice showed altered neuropathology and a novel PrPSc type after a long incubation period. We then passaged the brain homogenate from the 129M/M mouse inoculated with sCJD-VV2 prions into other 129M/M or 129V/V mice. Despite cross-sequence transmission, 129V/V mice were highly susceptible to these prions compared to the 129M/M mice. The neuropathology and PrPSc type of the 129V/V mice inoculated with the 129M/M mouse-passaged sCJD-VV2 prions were identical to those of the 129V/V mice inoculated with sCJD-VV2 prions. Moreover, we generated for the first time a type 2 PrPSc-specific antibody in addition to type 1 PrPSc-specific antibody and discovered that drastic changes in the PrPSc subpopulation underlie the traceback phenomenon. Here, we report the first direct evidence of the traceback in prion infection.Creutzfeldt-Jakob disease (CJD) is a lethal transmissible neurodegenerative disease caused by an abnormal isoform of prion protein (PrPSc), which is converted from the normal cellular isoform (PrPC) (1, 23). The genotype (M/M, M/V, or V/V, where M and V are allelotypes) at polymorphic codon 129 of the human prion protein (PrP) gene and the type (type 1 or type 2) of PrPSc in the brain are major determinants of the clinicopathological phenotypes of sporadic CJD (sCJD) (15-18). Type 1 and type 2 PrPSc are distinguishable according to the size of the proteinase K-resistant core of PrPSc (PrPres) (21 and 19 kDa, respectively), reflecting differences in the proteinase K cleavage site (at residues 82 and 97, respectively) (15, 18). According to this molecular typing system, sCJD can be classified into six subgroups (MM1, MM2, MV1, MV2, VV1, or VV2).The homology of the PrP genes between inoculated animals and the inoculum determines the susceptibility to prion infection. Transmission of sCJD prions to mice expressing human PrP with a nonhomologous genotype (referred to as cross-sequence transmission) results in a relatively long incubation period (10, 12). Meanwhile, the cross-sequence transmission can generate a new prion strain. Transmission of sCJD-VV2 prions to mice expressing human PrP with the 129M/M genotype generates unusual PrPres intermediate in size between type 1 and type 2 (10). We have designated this unusual PrPres with an upward size shift (Sh+) from the inoculated type 2 template MM[VV2]2Sh+ PrPres, where the notation is of the following form: host genotype [type of inoculated prion] type of generated PrPres.Similar to the MM[VV2]2Sh+ PrPres, the intermediate-sized PrPres has been observed in the plaque-type of dura mater graft-associated CJD (p-dCJD) (10, 13). Furthermore, a transmission study using p-dCJD prions revealed that PrP-humanized mice with the 129V/V genotype were highly susceptible to p-dCJD prions despite cross-sequence transmission (10). In addition, these 129V/V mice inoculated with p-dCJD prions produced type 2 PrPres (10). These findings suggest that p-dCJD could be caused by cross-sequence transmission of sCJD-VV2 prions to individuals with the 129M/M genotype. We have designated this phenomenon “traceback.” The traceback phenomenon was discovered for the first time by a transmission study using variant CJD (vCJD) prions (2). Mice expressing bovine PrP were highly susceptible to vCJD prions because vCJD was caused by cross-sequence transmission of bovine spongiform encephalopathy prions to human. These findings suggest that a traceback study can be a powerful tool to identify the origin of prions (2, 10, 11). However, the traceback phenomenon has not been verified experimentally despite the abundant circumstantial evidence described above.To verify the traceback of sCJD-VV2 prions, we inoculated sCJD-VV2 prions into PrP-humanized mice with the 129M/M genotype as an experimental model of p-dCJD. Thereafter, we inoculated these MM[VV2]2Sh+ prions into PrP-humanized mice with the 129M/M or 129V/V genotype and compared the incubation period, neuropathology, and the type of PrPres in the brain. Here, we report the first direct evidence of the traceback in prion infection.  相似文献   

4.
Prion diseases result from the accumulation of a misfolded isoform (PrPSc) of the normal host prion protein (PrPC). PrPSc propagates by templating its conformation onto resident PrPC to generate new PrPSc. Although the nature of the PrPSc-PrPC complex is unresolved, certain segments or specific residues are thought to feature critically in its formation. The polymorphic residue 129 is one such site under considerable study. We combined transmission studies with a novel live cell yeast-based fluorescence resonance energy transfer (FRET) system that models the molecular association of PrP in a PrPSc-like state, as a way to explore the role of residue 129 in this process. We show that a reduction in efficiency of prion transmission between donor PrPSc and recipient PrPC that are mismatched at residue 129 correlates with a reduction in FRET between PrP-129M and PrP-129V in our yeast model. We further show that this effect depends on the different secondary structure propensities of Met and Val, rather than the specific amino acids. Finally, introduction of the disease-associated P101L mutation (mouse- equivalent) abolished FRET with wild-type mouse PrP, whereas mutant PrP-P101L displayed high FRET with homologous PrP-P101L, as long as residue 129 matched. These studies provide the first evidence for a physical alteration in the molecular association of PrP molecules differing in one or more residues, and they further predict that the different secondary structure propensities of Met and Val define the impaired association observed between PrPSc and PrPC mismatched at residue 129.  相似文献   

5.
Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrPc). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrPsc (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrPsc levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrPsc deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrPc, the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrPc levels in brain varies from one disease to another. Reduced PrPc levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.  相似文献   

6.
Human prion diseases are fatal neurodegenerative disorders associated with an accumulation of PrPSc in the central nervous system (CNS). Of the human prion diseases, sporadic Creutzfeldt-Jakob disease (sCJD), which has no known origin, is the most common form while variant CJD (vCJD) is an acquired human prion disease reported to differ from other human prion diseases in its neurological, neuropathological, and biochemical phenotype. Peripheral tissue involvement in prion disease, as judged by PrPSc accumulation in the tonsil, spleen, and lymph node has been reported in vCJD as well as several animal models of prion diseases. However, this distribution of PrPSc has not been consistently reported for sCJD. We reexamined CNS and non-CNS tissue distribution and levels of PrPSc in both sCJD and vCJD. Using a sensitive immunoassay, termed SOFIA, we also assessed PrPSc levels in human body fluids from sCJD as well as in vCJD-infected humanized transgenic mice (Tg666). Unexpectedly, the levels of PrPSc in non-CNS human tissues (spleens, lymph nodes, tonsils) from both sCJD and vCJD did not differ significantly and, as expected, were several logs lower than in the brain. Using protein misfolding cyclic amplification (PMCA) followed by SOFIA, PrPSc was detected in cerebrospinal fluid (CSF), but not in urine or blood, in sCJD patients. In addition, using PMCA and SOFIA, we demonstrated that blood from vCJD-infected Tg666 mice showing clinical disease contained prion disease-associated seeding activity although the data was not statistically significant likely due to the limited number of samples examined. These studies provide a comparison of PrPSc in sCJD vs. vCJD as well as analysis of body fluids. Further, these studies also provide circumstantial evidence that in human prion diseases, as in the animal prion diseases, a direct comparison and intraspecies correlation cannot be made between the levels of PrPSc and infectivity.  相似文献   

7.
The mammalian prions replicate by converting cellular prion protein (PrPC) into pathogenic conformational isoform (PrPSc). Variations in prions, which cause different disease phenotypes, are referred to as strains. The mechanism of high-fidelity replication of prion strains in the absence of nucleic acid remains unsolved. We investigated the impact of different conformational characteristics of PrPSc on conversion of PrPC in vitro using PrPSc seeds from the most frequent human prion disease worldwide, the Creutzfeldt-Jakob disease (sCJD). The conversion potency of a broad spectrum of distinct sCJD prions was governed by the level, conformation, and stability of small oligomers of the protease-sensitive (s) PrPSc. The smallest most potent prions present in sCJD brains were composed only of∼20 monomers of PrPSc. The tight correlation between conversion potency of small oligomers of human sPrPSc observed in vitro and duration of the disease suggests that sPrPSc conformers are an important determinant of prion strain characteristics that control the progression rate of the disease.  相似文献   

8.
Sporadic Creutzfeldt-Jakob disease (sCJD) cases are currently subclassified according to the methionine/valine polymorphism at codon 129 of the PRNP gene and the proteinase K (PK) digested abnormal prion protein (PrPres)identified on Western blotting (type 1 or type 2). These biochemically distinct PrPres types have been considered to represent potential distinct prion strains. However, since cases of CJD show co-occurrence of type 1 and type 2 PrPres in the brain, the basis of this classification system and its relationship to agent strain are under discussion. Different brain are as from 41 sCJD and 12 iatrogenic CJD (iCJD) cases were investigated, using Western blotting for PrPres and two other biochemical assays reflecting the behaviour of the disease-associated form of the prion protein (PrPSc) under variable PK digestion conditions. In 30% of cases, both type 1 and type 2 PrPres were identified. Despite this, the other two biochemical assays found that PrPSc from an individual patient demonstrated uniform biochemical properties. Moreover, in sCJD, four distinct biochemical PrPSc subgroups were identified that correlated with the current sCJD clinico-pathological classification. In iCJD, four similar biochemical clusters were observed, but these did not correlate to any particular PRNP 129 polymorphism or western blot PrPres pattern. The identification of four different PrPSc biochemical subgroups in sCJD and iCJD, irrespective of the PRNP polymorphism at codon 129 and the PrPres isoform provides an alternative biochemical definition of PrPSc diversity and new insight in the perception of Human TSE agents variability.  相似文献   

9.
Sporadic Creutzfeldt-Jakob disease (CJD) is the most prevalent manifestation of the transmissible spongiform encephalopathies or prion diseases affecting humans. The disease encompasses a spectrum of clinical phenotypes that have been correlated with molecular subtypes that are characterized by the molecular mass of the protease-resistant fragment of the disease-related conformation of the prion protein and a polymorphism at codon 129 of the gene encoding the prion protein. A cell-free assay of prion protein misfolding was used to investigate the ability of these sporadic CJD molecular subtypes to propagate using brain-derived sources of the cellular prion protein (PrPC). This study confirmed the presence of three distinct sporadic CJD molecular subtypes with PrPC substrate requirements that reflected their codon 129 associations in vivo. However, the ability of a sporadic CJD molecular subtype to use a specific PrPC substrate was not determined solely by codon 129 as the efficiency of prion propagation was also influenced by the composition of the brain tissue from which the PrPC substrate was sourced, thus indicating that nuances in PrPC or additional factors may determine sporadic CJD subtype. The results of this study will aid in the design of diagnostic assays that can detect prion disease across the diversity of sporadic CJD subtypes.  相似文献   

10.

Objective

The glycoprofile of pathological prion protein (PrPres) is widely used as a diagnosis marker in Creutzfeldt-Jakob disease (CJD) and is thought to vary in a strain-specific manner. However, that the same glycoprofile of PrPres always accumulates in the whole brain of one individual has been questioned. We aimed to determine whether and how PrPres glycosylation is regulated in the brain of patients with sporadic and variant Creutzfeldt-Jakob disease.

Methods

PrPres glycoprofiles in four brain regions from 134 patients with sporadic or variant CJD were analyzed as a function of the genotype at codon 129 of PRNP and the Western blot type of PrPres.

Results

The regional distribution of PrPres glycoforms within one individual was heterogeneous in sporadic but not in variant CJD. PrPres glycoforms ratio significantly correlated with the genotype at codon 129 of the prion protein gene and the Western blot type of PrPres in a region-specific manner. In some cases of sCJD, the glycoprofile of thalamic PrPres was undistinguishable from that observed in variant CJD.

Interpretation

Regulations leading to variations of PrPres pattern between brain regions in sCJD patients, involving host genotype and Western blot type of PrPres may contribute to the specific brain targeting of prion strains and have direct implications for the diagnosis of the different forms of CJD.  相似文献   

11.
Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrPSc, a disease-associated isoform of the host-encoded cellular protein (PrPC). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrPSc. However, PrPSc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrPSc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrPC and PrPSc by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrPSc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl]1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl]1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrPSc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrPSc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrPSc conformational stabilities of protease-resistant and protease-sensitive PrPSc and that it is a valuable tool for strain typing in natural hosts, such as humans and sheep.  相似文献   

12.
A conformational transition of normal cellular prion protein (PrPC) to its pathogenic form (PrPSc) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild‐type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain‐swapped dimers or closed monomers; the four mutant PrPs crystallized as non‐swapped dimers. Three of the four mutant PrPs aligned to form intermolecular β‐sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular β‐sheets involving the M/V129 polymorphic residue.  相似文献   

13.
In most forms of prion disease, infectivity is present primarily in the central nervous system or immune system organs such as spleen and lymph node. However, a transgenic mouse model of prion disease has demonstrated that prion infectivity can also be present as amyloid deposits in heart tissue. Deposition of infectious prions as amyloid in human heart tissue would be a significant public health concern. Although abnormal disease-associated prion protein (PrPSc) has not been detected in heart tissue from several amyloid heart disease patients, it has been observed in the heart tissue of a patient with sporadic Creutzfeldt-Jakob Disease (sCJD), the most common form of human prion disease. In order to determine whether prion infectivity can be found in heart tissue, we have inoculated formaldehyde fixed brain and heart tissue from two sCJD patients, as well as prion protein positive fixed heart tissue from two amyloid heart disease patients, into transgenic mice overexpressing the human prion protein. Although the sCJD brain samples led to clinical or subclinical prion infection and deposition of PrPSc in the brain, none of the inoculated heart samples resulted in disease or the accumulation of PrPSc. Thus, our results suggest that prion infectivity is not likely present in cardiac tissue from sCJD or amyloid heart disease patients.  相似文献   

14.
Sporadic Creutzfeldt-Jakob disease (sCJD) cases are currently subclassified according to the methionine/valine polymorphism at codon 129 of the PRNP gene and the proteinase K (PK) digested abnormal prion protein (PrP(res)) identified on Western blotting (type 1 or type 2). These biochemically distinct PrP(res) types have been considered to represent potential distinct prion strains. However, since cases of CJD show co-occurrence of type 1 and type 2 PrP(res) in the brain, the basis of this classification system and its relationship to agent strain are under discussion. Different brain areas from 41 sCJD and 12 iatrogenic CJD (iCJD) cases were investigated, using Western blotting for PrP(res) and two other biochemical assays reflecting the behaviour of the disease-associated form of the prion protein (PrP(Sc)) under variable PK digestion conditions. In 30% of cases, both type 1 and type 2 PrP(res) were identified. Despite this, the other two biochemical assays found that PrP(Sc) from an individual patient demonstrated uniform biochemical properties. Moreover, in sCJD, four distinct biochemical PrP(Sc) subgroups were identified that correlated with the current sCJD clinico-pathological classification. In iCJD, four similar biochemical clusters were observed, but these did not correlate to any particular PRNP 129 polymorphism or western blot PrP(res) pattern. The identification of four different PrP(Sc) biochemical subgroups in sCJD and iCJD, irrespective of the PRNP polymorphism at codon 129 and the PrP(res) isoform provides an alternative biochemical definition of PrP(Sc) diversity and new insight in the perception of Human TSE agents variability.  相似文献   

15.
Prions are infectious agents that cause the inevitably fatal transmissible spongiform encephalopathy (TSE) in animals and humans9,18. The prion protein has two distinct isoforms, the non-infectious host-encoded protein (PrPC) and the infectious protein (PrPSc), an abnormally-folded isoform of PrPC 8.One of the challenges of working with prion agents is the long incubation period prior to the development of clinical signs following host inoculation13. This traditionally mandated long and expensive animal bioassay studies. Furthermore, the biochemical and biophysical properties of PrPSc are poorly characterized due to their unusual conformation and aggregation states.PrPSc can seed the conversion of PrPC to PrPScin vitro14. PMCA is an in vitro technique that takes advantage of this ability using sonication and incubation cycles to produce large amounts of PrPSc, at an accelerated rate, from a system containing excess amounts of PrPC and minute amounts of the PrPSc seed19. This technique has proven to effectively recapitulate the species and strain specificity of PrPSc conversion from PrPC, to emulate prion strain interference, and to amplify very low levels of PrPSc from infected tissues, fluids, and environmental samples6,7,16,23 .This paper details the PMCA protocol, including recommendations for minimizing contamination, generating consistent results, and quantifying those results. We also discuss several PMCA applications, including generation and characterization of infectious prion strains, prion strain interference, and the detection of prions in the environment.  相似文献   

16.
Prion protein (PrP) adopts either a helical conformation (PrPC) or an alternative, beta sheet-rich, misfolded conformation (PrPSc). The PrPSc form has the ability to “infect” PrPC and force it into the misfolded state. Accumulation of PrPSc is associated with a number of lethal neurodegenerative disorders, including Creutzfeldt-Jacob disease (CJD). Knockout of PrPC protects cells and animals from PrPSc infection; thus, there is interest in identifying factors that regulate PrPC stability, with the therapeutic goal of reducing PrPC levels and limiting infection by PrPSc. Here, we assembled a short-hairpin RNA (shRNA) library composed of 25+ shRNA sequences for each of 133 protein homeostasis (aka proteostasis) factors, such as molecular chaperones and co-chaperones. This Proteostasis shRNA Library was used to identify regulators of PrPC stability in HEK293 Hu129M cells. Strikingly, the screen identified a number of Hsp70 family members and their co-chaperones as putative targets. Indeed, a chemical pan-inhibitor of Hsp70s reduced PrPC levels and limited conversion to PrPSc in N2a cells. These results implicate specific proteostasis sub-networks, especially the Hsp70 system, as potential new targets for the treatment of CJD. More broadly, the Proteostasis shRNA Library might be a useful tool for asking which proteostasis factors are important for a given protein.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01191-8.  相似文献   

17.
The four glycoforms of the cellular prion protein (PrPC) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrPSc) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrPSc in the recently identified variably protease-sensitive prionopathy (VPSPr) is the absence of a diglycosylated form, also notable in familial Creutzfeldt-Jakob disease (fCJD), which is linked to mutations in PrP either from Val to Ile at residue 180 (fCJDV180I) or from Thr to Ala at residue 183 (fCJDT183A). Here we report that fCJDV180I, but not fCJDT183A, exhibits a proteinase K (PK)-resistant PrP (PrPres) that is markedly similar to that observed in VPSPr, which exhibits a five-step ladder-like electrophoretic profile, a molecular hallmark of VPSPr. Remarkably, the absence of the diglycosylated PrPres species in both fCJDV180I and VPSPr is likewise attributable to the absence of PrPres glycosylated at the first N-linked glycosylation site at residue 181, as in fCJDT183A. In contrast to fCJDT183A, both VPSPr and fCJDV180I exhibit glycosylation at residue 181 on di- and monoglycosylated (mono181) PrP prior to PK-treatment. Furthermore, PrPV180I with a typical glycoform profile from cultured cells generates detectable PrPres that also contains the diglycosylated PrP in addition to mono- and unglycosylated forms upon PK-treatment. Taken together, our current in vivo and in vitro studies indicate that sporadic VPSPr and familial CJDV180I share a unique glycoform-selective prion formation pathway in which the conversion of diglycosylated and mono181 PrPC to PrPSc is inhibited, probably by a dominant-negative effect, or by other co-factors.  相似文献   

18.
A national system for surveillance of prion diseases (PrDs) was established in Japan in April 1999. Here, we analyzed the relationships among prion protein gene (PRNP) mutations and the clinical features, cerebrospinal fluid (CSF) markers, and pathological characteristics of the major genotypes of genetic PrDs (gPrDs). We retrospectively analyzed age at onset and disease duration; the concentrations and incidences of 14-3-3 protein, tau protein, and abnormal prion protein (PrPSc) in the CSF of 309 gPrD patients with P102L, P105L, E200K, V180I, or M232R mutations; and brain pathology in 32 autopsied patients. Three clinical phenotypes were seen: rapidly progressive Creutzfeldt-Jakob disease (CJD), which included 100% of E200K cases, 70% of M232R, and 21% of P102L; slowly progressive CJD, which included 100% of V180I and 30% of M232R; and Gerstmann-Sträussler-Scheinker disease, which included 100% of P105L and 79% of P102L. PrPSc was detected in the CSF of more than 80% of patients with E200K, M232R, or P102L mutations but in only 39% of patients with V180I. V180I was accompanied by weak PrP immunoreactivity in the brain. Patients negative for PrPSc in the CSF were older at disease onset than positive patients. Patients with mutations associated with high 14-3-3 protein levels in the CSF typically had synaptic deposition of PrP in the brain and a rapid course of disease. The presence of small PrP protein fragments in brain homogenates was not correlated with other clinicopathological features. Positivity for PrPSc in the CSF may reflect the pathological process before or at disease onset, or abnormality in the secretion or metabolism of PrPSc. The amount of 14-3-3 protein in the CSF likely indicates the severity of the pathological process and accompanying neuronal damage. These characteristic features of the CSF in cases of gPrD will likely facilitate accurate diagnosis and clinicopathological study of the various disease subtypes.  相似文献   

19.
While elucidating the peculiar epitope of the α-PrP mAb IPC2, we found that PrPSc exhibits the sulfoxidation of residue M213 as a covalent signature. Subsequent computational analysis predicted that the presence of sulfoxide groups at both Met residues 206 and 213 destabilize the α-fold, suggesting oxidation may facilitate the conversion of PrPC into PrPSc. To further study the effect of oxidation on prion formation, we generated pAbs to linear PrP peptides encompassing the Helix-3 region, as opposed to the non-linear complexed epitope of IPC2. We now show that pAbs, whose epitopes comprise Met residues, readily detected PrPC, but could not recognize most PrPSc bands unless they were vigorously reduced. Next, we showed that the α-Met pAbs did not recognize newly formed PrPSc, as is the case for the PK resistant PrP present in lines of prion infected cells. In addition, these reagents did not detect intermediate forms such as PK sensitive and partially aggregated PrPs present in infected brains. Finally, we show that PrP molecules harboring the pathogenic mutation E200K, which is linked to the most common form of familial CJD, may be spontaneously oxidized. We conclude that the oxidation of methionine residues in Helix-3 represents an early and important event in the conversion of PrPC to PrPSc. We believe that further investigation into the mechanism and role of PrP oxidation will be central in finally elucidating the mechanism by which a normal cell protein converts into a pathogenic entity that causes fatal brain degeneration.  相似文献   

20.
The conformational conversion of the cellular prion protein (PrPC) to the β-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号