首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
While GDNF signaling through the Ret receptor is critical for kidney development, its specific role in branching morphogenesis of the epithelial ureteric bud (UB) is unclear. Ret expression defines a population of UB "tip cells" distinct from cells of the tubular "trunks," but how these cells contribute to UB growth is unknown. We have used time-lapse mosaic analysis to investigate normal cell fates within the growing UB and the developmental potential of cells lacking Ret. We found that normal tip cells are bipotential, contributing to both tips and trunks. Cells lacking Ret are specifically excluded from the tips, although they contribute to the trunks, revealing that the tips form and expand by GDNF-driven cell proliferation. Surprisingly, the mutant cells assumed an asymmetric distribution in the UB trunks, suggesting a model of branching in which the epithelium of the tip and the adjacent trunk is remodeled to form new branches.  相似文献   

5.
The tyrosine phosphatase Shp2 acts downstream of various growth factors, hormones or cytokine receptors. Mutations of the Shp2 gene are associated with several human diseases. Here we have ablated Shp2 in the developing kidneys of mice, using the ureteric bud epithelium-specific Hoxb7/Cre. Mutant mice produced a phenotype that is similar to mutations of the genes of the GDNF/Ret receptor system, that is: strongly reduced ureteric bud branching and downregulation of the Ret target genes Etv4 and Etv5. Shp2 mutant embryonic kidneys also displayed reduced cell proliferation at the branch tips and branching defects, which could not be overcome by GDNF in organ culture. We also examined compound mutants of Shp2 and Sprouty1, which is an inhibitor of receptor tyrosine kinase signaling in the kidney. Sprouty1 single mutants produce supernumerary ureteric buds, which branch excessively. Sprouty1 mutants rescued branching deficits in Ret−/− and GDNF−/− kidneys. Sprouty1; Shp2 double mutants showed no rescue of kidney branching. Our data thus indicate an intricate interplay of Shp2 and Sprouty1 in signaling downstream of receptor tyrosine kinases during kidney development. Apparently, Shp2 mediates not only GDNF/Ret but also signaling by other receptor tyrosine kinases in branching morphogenesis of the embryonic kidney.  相似文献   

6.
7.
Glial cell line-derived neurotrophic factor (GDNF) binds a coreceptor GDNF family receptor α1 (GFRα1) and forms a signaling complex with the receptor tyrosine kinase RET. GDNF-GFRα1-RET signaling activates cellular pathways that are required for normal induction of the ureteric bud (UB) from the Wolffian duct (WD). Failure of UB formation results in bilateral renal agenesis and perinatal lethality. Gfrα1 is expressed in both the epithelial and mesenchymal compartments of the developing kidney while Ret expression is specific to the epithelium. The biological importance of Gfrα1’s wider tissue expression and its role in later kidney development are unclear. We discovered that conditional loss of Gfrα1 in the WD epithelium prior to UB branching is sufficient to cause renal agenesis. This finding indicates that Gfrα1 expressed in the nonepithelial structures cannot compensate for this loss. To determine Gfrα1’s role in branching morphogenesis after UB induction we used an inducible Gfrα1-specific Cre-deletor strain and deleted Gfrα1 from the majority of UB tip cells post UB induction in vivo and in explant kidney cultures. We report that Gfrα1 excision from the epithelia compartment after UB induction caused a modest reduction in branching morphogenesis. The loss of Gfrα1 from UB-tip cells resulted in reduced cell proliferation and decreased activated ERK (pERK). Further, cells without Gfrα1 expression are able to populate the branching UB tips. These findings delineate previously unclear biological roles of Gfrα1 in the urinary tract and demonstrate its cell-type and stage-specific requirements in kidney development.  相似文献   

8.
The interactions between the nephrogenic mesenchyme and the ureteric bud during kidney development are well documented. While recent studies have shed some light on the importance of the stroma during renal development, many of the signals generated in the stroma, the genetic pathways and interaction networks involving the stroma are yet to be identified. Our previous studies demonstrate that retinoids are crucial for branching of the ureteric bud and for patterning of the cortical stroma. In the present study we demonstrate that autocrine retinoic acid (RA) signaling in stromal cells is critical for their survival and patterning, and show that Extracellular matrix 1, Ecm1, a gene that in humans causes irritable bowel syndrome and lipoid proteinosis, is a novel RA-regulated target in the developing kidney, which is secreted from the cortical stromal cells surrounding the cap mesenchyme and ureteric bud. Our studies suggest that Ecm1 is required in the ureteric bud for regulating the distribution of Ret which is normally restricted to the tips, as inhibition of Ecm1 results in an expanded domain of Ret expression and reduced numbers of branches. We propose a model in which retinoid signaling in the stroma activates expression of Ecm1, which in turn down-regulates Ret expression in the ureteric bud cleft, where bifurcation normally occurs and normal branching progresses.  相似文献   

9.
Development of the metanephric kidney begins with the induction of a single ureteric bud (UB) on the caudal Wolffian duct (WD) in response to GDNF (glial cell line-derived neurotrophic factor) produced by the adjacent metanephric mesenchyme (MM). Mutual interaction between the UB and MM maintains expression of GDNF in the MM, thereby supporting further outgrowth and branching morphogenesis of the UB, while the MM also grows and aggregates around the branched tips of the UB. Ror2, a member of the Ror family of receptor tyrosine kinases, has been shown to act as a receptor for Wnt5a to mediate noncanonical Wnt signaling. We show that Ror2 is predominantly expressed in the MM during UB induction and that Ror2- and Wnt5a-deficient mice exhibit duplicated ureters and kidneys due to ectopic UB induction. During initial UB formation, these mutant embryos show dysregulated positioning of the MM, resulting in spatiotemporally aberrant interaction between the MM and WD, which provides the WD with inappropriate GDNF signaling. Furthermore, the numbers of proliferating cells in the mutant MM are markedly reduced compared to the wild-type MM. These results indicate an important role of Wnt5a-Ror2 signaling in morphogenesis of the MM to ensure proper epithelial tubular formation of the UB required for kidney development.  相似文献   

10.
GDNF/Ret signaling and the development of the kidney   总被引:6,自引:0,他引:6  
Signaling by GDNF through the Ret receptor is required for normal growth of the ureteric bud during kidney development. However, the precise role of GDNF/Ret signaling in renal branching morphogenesis and the specific responses of ureteric bud cells to GDNF remain unclear. Recent studies have provided new insight into these issues. The localized expression of GDNF by the metanephric mesenchyme, together with several types of negative regulation, is important to elicit and correctly position the initial budding event from the Wolffian duct. GDNF also promotes the continued branching of the ureteric bud. However, it does not provide the positional information required to specify the pattern of ureteric bud growth and branching, as its site of synthesis can be drastically altered with minimal effects on kidney development. Cells that lack Ret are unable to contribute to the tip of the ureteric bud, apparently because GDNF-driven proliferation is required for the formation and growth of this specialized epithelial domain.  相似文献   

11.
Reciprocal cell-cell interactions between the ureteric epithelium and the metanephric mesenchyme are needed to drive growth and differentiation of the embryonic kidney to completion. Branching morphogenesis of the Wolffian duct derived ureteric bud is integral in the generation of ureteric tips and the elaboration of the collecting duct system. Wnt11, a member of the Wnt superfamily of secreted glycoproteins, which have important regulatory functions during vertebrate embryonic development, is specifically expressed in the tips of the branching ureteric epithelium. In this work, we explore the role of Wnt11 in ureteric branching and use a targeted mutation of the Wnt11 locus as an entrance point into investigating the genetic control of collecting duct morphogenesis. Mutation of the Wnt11 gene results in ureteric branching morphogenesis defects and consequent kidney hypoplasia in newborn mice. Wnt11 functions, in part, by maintaining normal expression levels of the gene encoding glial cell-derived neurotrophic factor (Gdnf). Gdnf encodes a mesenchymally produced ligand for the Ret tyrosine kinase receptor that is crucial for normal ureteric branching. Conversely, Wnt11 expression is reduced in the absence of Ret/Gdnf signaling. Consistent with the idea that reciprocal interaction between Wnt11 and Ret/Gdnf regulates the branching process, Wnt11 and Ret mutations synergistically interact in ureteric branching morphogenesis. Based on these observations, we conclude that Wnt11 and Ret/Gdnf cooperate in a positive autoregulatory feedback loop to coordinate ureteric branching by maintaining an appropriate balance of Wnt11-expressing ureteric epithelium and Gdnf-expressing mesenchyme to ensure continued metanephric development.  相似文献   

12.
Bcl-2 is the founding member of a family of proteins that influence apoptosis. During kidney development bcl-2 not only acts as a survival factor, but may also impact cell adhesive mechanisms and by extension branching morphogenesis. The interrelationship between cell adhesion, migration and apoptosis, important during development, is poorly understood. Here we examined the impact lack of bcl-2, an inhibitor of apoptosis, has on ureteric bud (UB) cell adhesion, migration, and branching morphogenesis. Bcl-2 -/- UB cells demonstrated increased cell migration, increased cell invasion and decreased adhesion to vitronectin and fibronectin compared with wild-type cells. Bcl-2 +/+ UB cells readily branched in collagen gel and Matrigel while bcl-2 -/- UB cells did not undergo significant branching in either matrix. Re-expression of bcl-2 in bcl-2 -/- UB cells restored their ability to undergo branching morphogenesis in Matrigel. Consistent with our in vitro data, we show that in the absence of bcl-2, embryonic kidneys undergo decreased UB branching. We observed decreased numbers of UB branch points, UB branch tips and a decreased distance to the first UB branch point in the absence of bcl-2. The alterations in bcl-2 -/- UB cell adhesion and migration was also associated with a significant alteration in expression of a number of extracellular matrix proteins. Bcl-2 -/- UB cells exhibited increased fibronectin expression and decreased thrombospondin-1 and osteopontin expression. Taken together, these data suggest that bcl-2 is required for the proper regulation of cell adhesive and migratory mechanisms, perhaps through modulation of the cellular microenvironment.  相似文献   

13.
Branching morphogenesis in the developing mammalian kidney involves growth and branching of the ureteric bud (UB), leading to formation of its daughter collecting ducts, calyces, pelvis and ureters. Even subtle defects in the efficiency and/or accuracy of this process have profound effects on the ultimate development of the kidney and result in congenital abnormalities of the kidney and urinary tract. This review summarizes current knowledge regarding a number of genes known to regulate UB development and emphasizes an emerging role for the renin-angiotensin system (RAS) in renal branching morphogenesis. Mutations in the genes encoding components of the RAS in mice cause renal papillary hypoplasia, hydronephrosis, and urinary concentrating defect. These findings imply that UB-derived epithelia are targets for angiotensin (ANG) II actions during metanephric kidney development. Here, it is proposed that papillary hypoplasia in RAS-deficient mice is secondary to an intrinsic defect in the development of the renal medulla. This hypothesis is based on the following observations: (a) UB and surrounding stroma express angiotensinogen (AGT) and ANG II AT1 receptors in vivo; (b) ANG II stimulates UB cell process extension, branching and cord formation in collagen gel cultures in vitro; and (c) AT1 blockade inhibits ANG II-induced UB cell branching. It is further postulated that ANG II is a novel stroma-derived factor involved in stroma/UB cross-talk which regulates UB branching morphogenesis.Key Words: kidney development, branching morphogenesis, renin-angiotensin, stromal mesenchyme, ureteric bud  相似文献   

14.
15.

Background

Development of the kidney is initiated when the ureteric bud (UB) branches from the Wolffian duct and invades the overlying metanephric mesenchyme (MM) triggering the mesenchymal/epithelial interactions that are the basis of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric bud formation.

Methods and Principal Findings

We have used gene targeting to create an Lrp4 null mouse line. The mutation results in early embryonic lethality with a subpenetrant phenotype of kidney agenesis. Ureteric budding is delayed with a failure to stimulate the metanephric mesenchyme in a timely manner, resulting in failure of cellular differentiation and resulting absence of kidney formation in the mouse as well as comparable malformations in humans with Cenani-Lenz syndrome.

Conclusion

Lrp4 is a multi-functional receptor implicated in the regulation of several molecular pathways, including Wnt and Bmp signaling. Lrp4−/− mice show a delay in ureteric bud formation that results in unilateral or bilateral kidney agenesis. These data indicate that Lrp4 is a critical regulator of UB branching and lack of Lrp4 results in congenital kidney malformations in humans and mice.  相似文献   

16.
The glial cell line-derived neurotrophic factor (GDNF)/RET tyrosine kinase signaling pathway plays crucial roles in the development of the enteric nervous system (ENS) and the kidney. Tyrosine 1062 (Y1062) in RET is an autophosphorylation residue that is responsible for the activation of the PI3K/AKT and RAS/MAPK signaling pathways. Mice lacking signaling via Ret Y1062 show renal hypoplasia and hypoganglionosis of the ENS although the phenotype is milder than the Gdnf- or Ret-deficient mice. Sprouty2 (Spry2) was found to be an antagonist for fibroblast growth factor receptor (FGFR) and acts as an inhibitory regulator of ERK activation. Spry2-deficient mice exhibit hearing loss and enteric nerve hyperplasia. In the present study, we generated Spry2-deficient and Ret Y1062F knock-in (tyrosine 1062 is replaced with phenylalanine) double mutant mice to see if abnormalities of the ENS and kidney, caused by loss of signaling via Ret Y1062, are rescued by a deficiency of Spry2. Double mutant mice showed significant recovery of ureteric bud branching and ENS development in the stomach. These results indicate that Spry2 regulates downstream signaling mediated by GDNF/RET signaling complex in vivo.  相似文献   

17.
Organ rudiments with their epithelial bud and adjacent mesenchyme look much the same at their initial stage of differentiation. The subsequent branching of the epithelial anlagen determines the final pattern of the organs, but the mesenchyme provides essential signals for epithelial differentiation. Glial cell line derived neurotrophic factor (GDNF) has recently been shown to regulate ureteric branching morphogenesis and is thereby the first defined signalling molecule in the embryonic metanephric kidney. GDNF is expressed by the mesenchyme, binds to the tip of the ureteric bud and functions in both bud induction and bud orientation. The active receptor complex for GDNF includes the receptor tyrosine kinase Ret and a novel class of glycosylphosphatidylinositol-linked receptors, called GDNF family receptor αs.  相似文献   

18.
Mutations in the renin-angiotensin system (RAS) genes are associated with congenital anomalies of the kidney and urinary tract (CAKUT). As angiotensin (Ang) II, the principal effector peptide growth factor of the RAS, stimulates ureteric bud (UB) branching in whole intact embryonic (E) metanephroi, defects in UB morphogenesis may be causally linked to CAKUT observed under conditions of disrupted RAS. In the present study, using the isolated intact UB (iUB) assay, we tested the hypothesis that Ang II stimulates UB morphogenesis by directly acting on the UB, identified Ang II target genes in the iUB by microarray and examined the effect of Ang II on UB cell migration in vitro. We show that isolated E11.5 mouse iUBs express Ang II AT(1) and AT(2) receptor mRNA. Treatment of E11.5 iUBs grown in collagen matrix gels with Ang II (10(-5)M) increases the number of iUB tips after 48h of culture compared to control (4.8±0.4 vs. 2.4±0.2, p<0.01). A number of genes required for UB branching as well as novel genes whose role in UB development is currently unknown are targets of Ang II signaling in the iUB. In addition, Ang II increases UB cell migration (346±5.1 vs. 275±4.4, p<0.01) in vitro. In summary, Ang II stimulates UB cell migration and directly induces morphogenetic response in the iUB. We conclude that Ang II-regulated genes in the iUB may be important mediators of Ang II-induced UB branching. We hypothesize that Ang II-dependent cell movements play an important role in UB branching morphogenesis.  相似文献   

19.
Branching of ureteric bud-derived epithelial tubes is a key morphogenetic process that shapes development of the kidney. Glial cell line-derived neurotrophic factor (GDNF) initiates ureteric bud formation and promotes subsequent branching morphogenesis. Exactly how GDNF coordinates branching morphogenesis is unclear. Here we show that the absence of the receptor tyrosine kinase antagonist Sprouty1 (Spry1) results in irregular branching morphogenesis characterized by both increased number and size of ureteric bud tips. Deletion of Spry1 specifically in the epithelium is associated with increased epithelial Wnt11 expression as well as increased mesenchymal Gdnf expression. We propose that Spry1 regulates a Gdnf/Ret/Wnt11-positive feedback loop that coordinates mesenchymal-epithelial dialogue during branching morphogenesis. Genetic experiments indicate that the positive (GDNF) and inhibitory (Sprouty1) signals have to be finely balanced throughout renal development to prevent hypoplasia or cystic hyperplasia. Epithelial cysts develop in Spry1-deficient kidneys that share several molecular characteristics with those observed in human disease, suggesting that Spry1 null mice may be useful animal models for cystic hyperplasia.  相似文献   

20.
Branching morphogenesis of epithelium is a common and important feature of organogenesis; it is, for example, responsible for development of renal collecting ducts, lung airways, milk ducts of mammary glands and seminal ducts of the prostate. In each case, epithelial development is controlled by a variety of mesenchyme-derived molecules, both soluble (e.g. growth factors) and insoluble (e.g. extracellular matrix). Little is known about how these varied influences are integrated to produce a coherent morphogenetic response, but integration is likely to be achieved at least partly by cytoplasmic signal transduction networks. Work in other systems (Drosophila tracheae, MDCK models) suggests that the mitogen-activated protein (MAP) kinase pathway might be important to epithelial branching. We have investigated the role of the MAP kinase pathway in one of the best characterised mammalian examples of branching morphogenesis, the ureteric bud of the metanephric kidney. We find that Erk MAP kinase is normally active in ureteric bud, and that inhibiting Erk activation with the MAP kinase kinase inhibitor, PD98059, reversibly inhibits branching in a dose-dependent manner, while allowing tubule elongation to continue. When Erk activation is inhibited, ureteric bud tips show less cell proliferation than controls and they also produce fewer laminin-rich processes penetrating the mesenchyme and fail to show the strong concentration of apical actin filaments typical of controls; apoptosis and expression of Ret and Ros, are, however, normal. The activity of the Erk MAP kinase pathway is dependent on at least two known regulators of ureteric bud branching; the GDNF-Ret signalling system and sulphated glycosaminoglycans. MAP kinase is therefore essential for normal branching morphogenesis of the ureteric bud, and lies downstream of significant extracellular regulators of ureteric bud development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号