首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimentally recorded time series formed by the exact times of occurrence of the neuronal spikes (spike train) is likely to be affected by observational noise that provokes events mistakenly confused with neuronal discharges, as well as missed detection of genuine neuronal discharges. The points of the spike train may also suffer a slight jitter in time due to stochastic processes in synaptic transmission and to delays in the detecting devices. This study presents a procedure aimed at filtering the embedded noise (denoising the spike trains) the spike trains based on the hypothesis that recurrent temporal patterns of spikes are likely to represent the robust expression of a dynamic process associated with the information carried by the spike train. The rationale of this approach is tested on simulated spike trains generated by several nonlinear deterministic dynamical systems with embedded observational noise. The application of the pattern grouping algorithm (PGA) to the noisy time series allows us to extract a set of points that form the reconstructed time series. Three new indices are defined for assessment of the performance of the denoising procedure. The results show that this procedure may indeed retrieve the most relevant temporal features of the original dynamics. Moreover, we observe that additional spurious events affect the performance to a larger extent than the missing of original points. Thus, a strict criterion for the detection of spikes under experimental conditions, thus reducing the number of spurious spikes, may raise the possibility to apply PGA to detect endogenous deterministic dynamics in the spike train otherwise masked by the observational noise.  相似文献   

2.
What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1–2):327–350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials.  相似文献   

3.
To date, single neuron recordings remain the gold standard for monitoring the activity of neuronal populations. Since obtaining single neuron recordings is not always possible, high frequency or ‘multiunit activity’ (MUA) is often used as a surrogate. Although MUA recordings allow one to monitor the activity of a large number of neurons, they do not allow identification of specific neuronal subtypes, the knowledge of which is often critical for understanding electrophysiological processes. Here, we explored whether prior knowledge of the single unit waveform of specific neuron types is sufficient to permit the use of MUA to monitor and distinguish differential activity of individual neuron types. We used an experimental and modeling approach to determine if components of the MUA can monitor medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) in the mouse dorsal striatum. We demonstrate that when well-isolated spikes are recorded, the MUA at frequencies greater than 100Hz is correlated with single unit spiking, highly dependent on the waveform of each neuron type, and accurately reflects the timing and spectral signature of each neuron. However, in the absence of well-isolated spikes (the norm in most MUA recordings), the MUA did not typically contain sufficient information to permit accurate prediction of the respective population activity of MSNs and FSIs. Thus, even under ideal conditions for the MUA to reliably predict the moment-to-moment activity of specific local neuronal ensembles, knowledge of the spike waveform of the underlying neuronal populations is necessary, but not sufficient.  相似文献   

4.
Fluorescence induction has been studied for a long time, but there are still questions concerning what the O-J-I-P kinetic steps represent. Most studies agree that the O-J rise is related to photosystem II primary acceptor (Q(A)) reduction, but several contradictory theories exist for the J-I and I-P rises. One problem with fluorescence induction analysis is that most work done to date has used only qualitative or semiquantitative data analysis by visually comparing traces to observe the effects of different chemicals or treatments. Although this method is useful to observe major changes, a quantitative method must be used to detect more subtle, yet important, differences in the fluorescence induction trace. To achieve this, we used a relatively simple mathematical approach to extract the amplitudes and half-times of the three major fluorescence induction phases obtained from traces measured in thylakoid membranes kept at various temperatures. Apparent activation energies (E(A)) were also obtained for each kinetic step. Our results show that each phase has a different E(A), with E(A O-J) 相似文献   

5.
6.
The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.  相似文献   

7.
The embryonic spinal cord consists of cycling neural progenitor cells that give rise to a large percentage of the neuronal and glial cells of the central nervous system (CNS). Although much is known about the molecular mechanisms that pattern the spinal cord and elicit neuronal differentiation1, 2, we lack a deep understanding of these early events at the level of cell behavior. It is thus critical to study the behavior of neural progenitors in real time as they undergo neurogenesis.In the past, real-time imaging of early embryonic tissue has been limited by cell/tissue viability in culture as well as the phototoxic effects of fluorescent imaging. Here we present a novel assay for imaging such tissue for long periods of time, utilizing a novel ex vivo slice culture protocol and wide-field fluorescence microscopy (Fig. 1). This approach achieves long-term time-lapse monitoring of chick embryonic spinal cord progenitor cells with high spatial and temporal resolution.This assay may be modified to image a range of embryonic tissues3, 4 In addition to the observation of cellular and sub-cellular behaviors, the development of novel and highly sensitive reporters for gene activity (for example, Notch signaling5) makes this assay a powerful tool with which to understand how signaling regulates cell behavior during embryonic development.  相似文献   

8.
9.
Recurring sequences of neuronal activation in the hippocampus are a candidate for a neurophysiological correlate of episodic memory. Here, we discuss a mean-field theory for such spike sequences in phase space and show how they become unstable when the neuronal network operates at maximum memory capacity. We find that inhibitory feedback rescues replay of the sequences, giving rise to oscillations and thereby enhancing the network’s capacity. We further argue that transient sequences in an overloaded network with feedback inhibition may provide a mechanistic picture of memory-related neuronal activity during hippocampal sharp-wave ripple complexes.  相似文献   

10.
An important tool to study rhythmic neuronal synchronization is provided by relating spiking activity to the Local Field Potential (LFP). Two types of interdependent spike-LFP measures exist. The first approach is to directly quantify the consistency of single spike-LFP phases across spikes, referred to here as point-field phase synchronization measures. We show that conventional point-field phase synchronization measures are sensitive not only to the consistency of spike-LFP phases, but are also affected by statistical dependencies between spike-LFP phases, caused by e.g. non-Poissonian history-effects within spike trains such as bursting and refractoriness. To solve this problem, we develop a new pairwise measure that is not biased by the number of spikes and not affected by statistical dependencies between spike-LFP phases. The second approach is to quantify, similar to EEG-EEG coherence, the consistency of the relative phase between spike train and LFP signals across trials instead of across spikes, referred to here as spike train to field phase synchronization measures. We demonstrate an analytical relationship between point-field and spike train to field phase synchronization measures. Based on this relationship, we prove that the spike train to field pairwise phase consistency (PPC), a quantity closely related to the squared spike-field coherence, is a monotonically increasing function of the number of spikes per trial. This derived relationship is exact and analytic, and takes a linear form for weak phase-coupling. To solve this problem, we introduce a corrected version of the spike train to field PPC that is independent of the number of spikes per trial. Finally, we address the problem that dependencies between spike-LFP phase and the number of spikes per trial can cause spike-LFP phase synchronization measures to be biased by the number of trials. We show how to modify the developed point-field and spike train to field phase synchronization measures in order to make them unbiased by the number of trials.  相似文献   

11.
Spiking information of individual neurons is essential for functional and behavioral analysis in neuroscience research. Calcium imaging techniques are generally employed to obtain activities of neuronal populations. However, these techniques result in slowly-varying fluorescence signals with low temporal resolution. Estimating the temporal positions of the neuronal action potentials from these signals is a challenging problem. In the literature, several generative model-based and data-driven algorithms have been studied with varied levels of success. This article proposes a neural network-based signal-to-signal conversion approach, where it takes as input raw-fluorescence signal and learns to estimate the spike information in an end-to-end fashion. Theoretically, the proposed approach formulates the spike estimation as a single channel source separation problem with unknown mixing conditions. The source corresponding to the action potentials at a lower resolution is estimated at the output. Experimental studies on the spikefinder challenge dataset show that the proposed signal-to-signal conversion approach significantly outperforms state-of-the-art-methods in terms of Pearson’s correlation coefficient, Spearman’s rank correlation coefficient and yields comparable performance for the area under the receiver operating characteristics measure. We also show that the resulting system: (a) has low complexity with respect to existing supervised approaches and is reproducible; (b) is layer-wise interpretable, and (c) has the capability to generalize across different calcium indicators.  相似文献   

12.
Cullin, a major component of the SKP1-cullin-F box protein (SCF) complex, is a scaffold protein that binds to both SKP1 and RBX1 for selective protein degradation through the ubiquitin proteasome system. In order to study the role of cullin in common wheat, we isolated TaCullin (Cullin gene from Triticum aestivum) from wheat spike cDNA. TaCullin was expressed during all spike/grain developmental stages and in high amounts during early spike/grain development. The TaCullin gene is located on the chromosome arm 2DL. Our results suggest that unneddylated TaCullin is located in the nucleus. Based on previous proposals of Cullin-SKP1 interactions, we examined the interaction between TaCullin and SKP1-like protein (TaSKP) families by using a yeast two-hybrid approach. Yeast cotransformation demonstrated that the N-terminus of TaCullin physically interacts with TaSKP proteins. Using the yeast two-hybrid screen, we identified potential TaCullin-interacting proteins in a wheat spike library. Among the 9 clones that were identified as potential interacting partners of TaCullin, we identified E3-like ubiquitin ligase, targeting fructose-1,6-bisphosphatase (RMD5) homolog A-like protein. The interaction between TaCullin and the TaRMD5 homolog A-like protein was specifically mediated through the C-terminus of TaCullin. The results of bimolecular fluorescence complementation assay indicated that TaCullin-TaRMD5 is localized in the plasma membrane and cytoplasm. In this study, we present that TaRMD5, such as RING box protein 1 (RBX1), has the potential to interact with TaCullin, depending on the developmental stage and particular organ tissues analyzed.  相似文献   

13.
Ediacaran-Cambrian bioturbation on bedding planes provides physical and chemical data about the environmental conditions and biological activities of early metazoans. We propose a quantitative method to estimate horizontal disruption of the substrate using bedding-plane trace fossils from Brioverian deposits. This methodology provides the first quantitative analysis of the trace fossil assemblage from the Armorican Massif (Brittany, NW of France). The Ediacaran-Cambrian transition within the Brioverian series is characterized by the abundance of simple and horizontal trace fossils such as Helminthopsis, Helminthoidichnites, and Palaeophycus as well as rare Gordia and Spirodesmos. Recent U-Pb dating has been carried out on detrital zircon grains from the upper Brioverian series suggesting a late Ediacaran to Fortunian age of the fossiliferous deposits (ca. 550 to 530 Ma). With Arc-Gis software, we use a semi-quantitative approach to estimate the relative 2D bioturbation rate recorded on bedding planes. The dataset is used to discuss the feeding strategies and how the seafloor ecospace was colonized by the early bilaterian metazoans. This approach combines new values such as: the length of a trace fossil, the surface of a trace, the cumulative length, and the cumulative surfaces from all of the ichnofossils recorded on the same slate surface, to finally suggest that the bioturbation rate of the microbial grazers impacted the use of the seafloor ecospaces and feeding strategies through the biomats.  相似文献   

14.
We present a novel computational model that detects temporal configurations of a given human neuronal pathway and constructs its artificial replication. This poses a great challenge since direct recordings from individual neurons are impossible in the human central nervous system and therefore the underlying neuronal pathway has to be considered as a black box. For tackling this challenge, we used a branch of complex systems modeling called artificial self-organization in which large sets of software entities interacting locally give rise to bottom-up collective behaviors. The result is an emergent model where each software entity represents an integrate-and-fire neuron. We then applied the model to the reflex responses of single motor units obtained from conscious human subjects. Experimental results show that the model recovers functionality of real human neuronal pathways by comparing it to appropriate surrogate data. What makes the model promising is the fact that, to the best of our knowledge, it is the first realistic model to self-wire an artificial neuronal network by efficiently combining neuroscience with artificial self-organization. Although there is no evidence yet of the model’s connectivity mapping onto the human connectivity, we anticipate this model will help neuroscientists to learn much more about human neuronal networks, and could also be used for predicting hypotheses to lead future experiments.  相似文献   

15.
The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns.  相似文献   

16.
The statistical analysis of neuronal spike trains by models of point processes often relies on the assumption of constant process parameters. However, it is a well-known problem that the parameters of empirical spike trains can be highly variable, such as for example the firing rate. In order to test the null hypothesis of a constant rate and to estimate the change points, a Multiple Filter Test (MFT) and a corresponding algorithm (MFA) have been proposed that can be applied under the assumption of independent inter spike intervals (ISIs). As empirical spike trains often show weak dependencies in the correlation structure of ISIs, we extend the MFT here to point processes associated with short range dependencies. By specifically estimating serial dependencies in the test statistic, we show that the new MFT can be applied to a variety of empirical firing patterns, including positive and negative serial correlations as well as tonic and bursty firing. The new MFT is applied to a data set of empirical spike trains with serial correlations, and simulations show improved performance against methods that assume independence. In case of positive correlations, our new MFT is necessary to reduce the number of false positives, which can be highly enhanced when falsely assuming independence. For the frequent case of negative correlations, the new MFT shows an improved detection probability of change points and thus, also a higher potential of signal extraction from noisy spike trains.  相似文献   

17.
18.
Extracellular multi-unit recording is a widely used technique to study spontaneous and evoked neuronal activity in awake behaving animals. These recordings are done using either single-wire or multiwire electrodes such as tetrodes. In this study we have tested the ability of single-wire electrodes to discriminate activity from multiple neurons under conditions of varying noise and neuronal cell density. Using extracellular single-unit recording, coupled with iontophoresis to drive cell activity across a wide dynamic range, we studied spike waveform variability, and explored systematic differences in single-unit spike waveform within and between brain regions as well as the influence of signal-to-noise ratio (SNR) on the similarity of spike waveforms. We also modelled spike misclassification for a range of cell densities based on neuronal recordings obtained at different SNRs. Modelling predictions were confirmed by classifying spike waveforms from multiple cells with various SNRs using a leading commercial spike-sorting system. Our results show that for single-wire recordings, multiple units can only be reliably distinguished under conditions of high recording SNR (≥ 4) and low neuronal density (≈ 20,000/ mm(3)). Physiological and behavioural changes, as well as technical limitations typical of awake animal preparations, reduce the accuracy of single-channel spike classification, resulting in serious classification errors. For SNR <4, the probability of misclassifying spikes approaches 100% in many cases. Our results suggest that in studies where the SNR is low or neuronal density is high, separation of distinct units needs to be evaluated with great caution.  相似文献   

19.
Spike trains are unreliable. For example, in the primary sensory areas, spike patterns and precise spike times will vary between responses to the same stimulus. Nonetheless, information about sensory inputs is communicated in the form of spike trains. A challenge in understanding spike trains is to assess the significance of individual spikes in encoding information. One approach is to define a spike train metric, allowing a distance to be calculated between pairs of spike trains. In a good metric, this distance will depend on the information the spike trains encode. This method has been used previously to calculate the timescale over which the precision of spike times is significant. Here, a new metric is constructed based on a simple model of synaptic conductances which includes binding site depletion. Including binding site depletion in the metric means that a given individual spike has a smaller effect on the distance if it occurs soon after other spikes. The metric proves effective at classifying neuronal responses by stimuli in the sample data set of electro-physiological recordings from the primary auditory area of the zebra finch fore-brain. This shows that this is an effective metric for these spike trains suggesting that in these spike trains the significance of a spike is modulated by its proximity to previous spikes. This modulation is a putative information-coding property of spike trains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号