首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.  相似文献   

2.
3.
Vance, C. P., Reibach, P. H. and Pankhurst, C. E. 1987. Symbiotic properties of Lotus pedunculatus root nodules induced by Rhizobium loti and Bradyrhizobium sp. ( Lotus ).
Symbiotic properties of root nodules were evaluated in glasshouse-grown Lotus pedunculatus Cav. cv. Maku inoculated with either a fast-growing Rhizobium loti strain NZP2037 or a slow-growing Bradyrhizobium sp. ( Lotus ) strain CC814s. Although the nodule mass of plants inoculated with NZP2037 was twice that of plants inoculated with CC814s, the yield of NZP2037 shoots and roots was 50% that of CC814s shoots and roots. Nodules induced by Bradyrhizobium fixed substantially more N than nodules induced by R. loti. Glucose requirements [mol glucose (mol N2 fixed)-1] of nodules induced by CC814s and NZP2037 were 7.1 and 16.6, respectively. Nodule enzymes of carbon and nitrogen assimilation reflected the disparity of the two sym-bioses. Xylem sap of the symbiosis with the higher yield contained a higher concentration of asparagine [9.86 μmol (ml xylem sap)'] than did the lower yielding symbiosis [5.80 umol (ml xylem sap)"']. Nodule CO2 fixation was directly linked to nodule N assimilation in both symbioses. The results indicate that the difference between the two symbioses extend to nodule N and C assimilation and whole plant N transport. The data support a role for host plant modulation of bacterial efficiency and assimilation of fixed N.  相似文献   

4.
The arylamine N-acetyltransferases (NAT; EC 2.3.1.5) are xenobiotic-metabolizing enzymes (XME) that catalyze the transfer of an acetyl group from acetylCoA (Ac-CoA) to arylamine, hydrazines and their N-hydroxylated metabolites. Eukaryotes may have up to three NAT isoforms, but Mesorhizobium loti is the only prokaryote with two functional NAT isoforms (MLNAT1 and MLNAT2). The three-dimensional structure of MLNAT1 has been determined (Holton, S.J., Dairou, J., Sandy, J., Rodrigues-Lima, F., Dupret, J.M., Noble, M.E.M. and Sim, E. (2005) Structure of Mesorhizobium loti arylamine N-acetyltransferase 1. Acta Cryst, F61, 14-16). No MLNAT2 crystals have yet been produced, despite the production of sufficient quantities of pure protein. Using purified recombinant MLNAT1 and MLNAT2, we showed here that MLNAT1 was intrinsically more stable than MLNAT2. To test whether different structural features could explain these differences in intrinsic stability, we constructed a high-quality homology model for MLNAT2 based on far UV-CD data. Despite low levels of sequence identity with other prokaryotic NAT enzymes ( approximately 28% identity), this model suggests that MLNAT2 adopts the characteristic three-domain NAT fold. More importantly, molecular dynamics simulations on the structures of MLNAT1 and MLNAT2 suggested that MLNAT2 was less stable than MLNAT1 due to differences in amino-acid sequence/structure features in the alpha/beta lid domain.  相似文献   

5.
Lotus rhizobia catabolized quercetin in an arabinose-based medium via a novel form of C-ring cleavage, yielding phloroglucinol and protocatechuic acid. Conservation of the A and B rings of the flavone suggests that a chalcone could be formed as a transient intermediate.  相似文献   

6.
Mukherjee T  Hilmey DG  Begley TP 《Biochemistry》2008,47(23):6233-6241
The function of the mlr6787 gene from Mesorhizobium loti MAFF303099 has been identified. This gene encodes 2-(acetamidomethylene)succinate hydrolase, an enzyme involved in the catabolism of pyridoxal 5'-phosphate (vitamin B 6). This enzyme was overexpressed in Escherichia coli, purified to homogeneity, and characterized. 2-(Acetamidomethylene)succinate hydrolase catalyzes the hydrolysis of 2-(acetamidomethylene)succinate to yield succinic semialdehyde, acetic acid, carbon dioxide, and ammonia. The k cat and K M for this reaction were 0.6 s (-1) and 143 microM, respectively. The enzyme was shown to utilize the E isomer of 2-(acetamidomethylene)succinate.  相似文献   

7.
8.
Glycogen synthase kinase-3 was isolated from rabbit skeletal muscle by an improved procedure. The purification was estimated to be 67000-fold and 0.2 mg of enzyme was isolated from 5000 g muscle, corresponding to an overall yield of 7%. The preparation was homogeneous by ultracentrifugal and electrophoretic criteria. The enzyme had a relative molecular mass of 47 kDa by sedimentation equilibrium centrifugation and 51 kDa by SDS-polyacrylamide gel electrophoresis. These values demonstrate that glycogen synthase kinase-3 is monomeric. The Stokes radius of 37 nm suggests the molecule to be asymmetric. The activating factor of the Mg-ATP dependent form of protein phosphatase-1 coeluted with glycogen synthase kinase-3 activity at the final step, establishing that these two activities reside in the same protein. Glycogen synthase kinase-3 phosphorylates glycogen synthase at sites-3, while casein kinase-II phosphorylates site-5, just C-terminal to sites-3 (Picton, C., Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 124, 37-45). The basis for the substrate specificities of these protein kinases was investigated using chymotryptic peptides that contain the sites phosphorylated by each enzyme. These studies showed that efficient phosphorylation of sites-3, required the presence of phosphate in site-5 and a region of polypeptide more than 20 residues C-terminal to site-5. In contrast, efficient phosphorylation by casein kinase-II does not require this C-terminal region, and the results are consistent with the view that the enzyme recognises acidic residues immediately C-terminal to site-5.  相似文献   

9.
C Watts  J R Redshaw  K R Gain 《FEBS letters》1982,144(2):231-234
A rapid high resolution method of purification of the Trp-containing S100 proteins (S100a, S100a′) and of the S100b protein has been developed. The principle of this method is based on the fact that S100b protein becomes highly hydrophobic upon Zn2+ binding, whereas S100a and S100a′ are not affected. On an affinity chromatography of phenyl—Sepharose column, S100b is selectively bound in presence of zinc, whereas the Trp-containing S100 patients are quickly eluted. The S100b protein is further eluted with a buffer containing EDTA.  相似文献   

10.
The nitrogen‐fixing symbiosis of legumes and Rhizobium bacteria is established by complex interactions between the two symbiotic partners. Legume Fix mutants form apparently normal nodules with endosymbiotic rhizobia but fail to induce rhizobial nitrogen fixation. These mutants are useful for identifying the legume genes involved in the interactions essential for symbiotic nitrogen fixation. We describe here a Fix mutant of Lotus japonicus, apn1, which showed a very specific symbiotic phenotype. It formed ineffective nodules when inoculated with the Mesorhizobium loti strain TONO. In these nodules, infected cells disintegrated and successively became necrotic, indicating premature senescence typical of Fix mutants. However, it formed effective nodules when inoculated with the M. loti strain MAFF303099. Among nine different M. loti strains tested, four formed ineffective nodules and five formed effective nodules on apn1 roots. The identified causal gene, ASPARTIC PEPTIDASE NODULE‐INDUCED 1 (LjAPN1), encodes a nepenthesin‐type aspartic peptidase. The well characterized Arabidopsis aspartic peptidase CDR1 could complement the strain‐specific Fix phenotype of apn1. LjAPN1 is a typical late nodulin; its gene expression was exclusively induced during nodule development. LjAPN1 was most abundantly expressed in the infected cells in the nodules. Our findings indicate that LjAPN1 is required for the development and persistence of functional (nitrogen‐fixing) symbiosis in a rhizobial strain‐dependent manner, and thus determines compatibility between M. loti and L. japonicus at the level of nitrogen fixation.  相似文献   

11.
A rabbit liver protein kinase (PC0.7), able to phosphorylate glycogen synthase and phosvitin, has been extensively purified. The enzyme had apparent Mr = 170,000-190,000 as judged by gel filtration and was associated with two major polypeptide species, alpha (Mr = 43,000) and beta (Mr = 25,000). Two other polypeptides, Mr = 38,000 and Mr = 35,000, were also detected. Treatment with trypsin led to an enzyme composed only of polypeptides of Mr = 35,000 and Mr = 25,000. The beta-polypeptide underwent autophosphorylation when incubated with Mg2+ and ATP or GTP. The protein kinase was effective in utilizing both ATP and GTP as the phosphoryl donor (apparent Km values 5-11 microM and 9-19 microM, respectively). The enzyme phosphorylated phosvitin, casein, and glycogen synthase but not histone or phosphorylase and was inhibited by heparin. Phosphorylation of glycogen synthase proceeded to approximately 0.5 phosphate/subunit with little inactivation of the glycogen synthase. The phosphorylation occurred predominantly in a 21,000-dalton CNBr fragment of glycogen synthase that had been previously shown to reside toward the COOH terminus of the molecule. The liver PC0.7 appeared very similar to an analogous enzyme isolated from rabbit muscle (DePaoli-Roach, A. A., Ahmad, Z., and Roach, P. J. (1981) J. Biol. Chem. 256, 8955-8962). The present work, therefore, provides a point of contact between the Ca2+ and cyclic nucleotide-independent glycogen synthase kinases of rabbit liver and muscle.  相似文献   

12.
13.
Merodiploids containing a high-constitutive and a low-constitutive araC(c) allele were assayed for constitutive expression of the ara operon. Low-constitutive araC(c) alleles either were unable to repress the constitutive rate of ara operon expression exhibited by by high-constitutive araC(c) alleles or achieved a partial repression of the high-constitutive rate of operon expression. Either mutation to a low-constitutive araC(c) mutant resulted in a partial or complete loss of repressor function, or subunit mixing between the two araC(c) mutant proteins resulted in a partial or complete dominance of the high-constitutive araC(c) allele. Five of the six araC(c) alleles tested allowed a partial induction of the ara operon in cya crp background. In general, a higher level of ara operon induction was achieved in the cya crp background by high araC(c) alleles than by low araC(c) alleles. Furthermore, several araC(c) mutants exhibited decreased sensitivity to catabolite repression, particularly in the presence of inducer. The results suggest a model in which certain araC(c) gene products can achieve ara operon induction in the presence of either arabinose (inducer) or catabolite activator protein-cyclic adenosine monophosphate, whereas the wild-type araC gene product requires the presence of both of these factors for operon expression.  相似文献   

14.
Rabbit skeletal muscle glycogen synthase was phosphorylated by kinase Fa, phosphorylase kinase, and cAMP-independent synthase (casein) kinase-1 to determine the differences among these kinase-catalyzed reactions. The stoichiometry of phosphate incorporation, the extent of inactivation, and the sites of phosphorylation were compared. Synthase (casein) kinase-1 catalyzes the highest level of synthase phosphorylation (4 mol/subunit) and inactivation (reduction of the activity ratio to below 0.05). The sites, defined by characteristic tryptic peptides, phosphorylated by synthase (casein) kinase-1 are distinguishable from those by kinase Fa and phosphorylase kinase. In addition, synthase (casein) kinase-1, unlike kinase Fa, does not activate ATP X Mg2+-dependent protein phosphatase. These results demonstrate that synthase (casein) kinase-1 is a distinct glycogen synthase kinase.  相似文献   

15.
Glycogen synthase kinase-5 (casein kinase-II) phosphorylates glycogen synthase on a serine termed site 5. This residue is just C-terminal to the 3 serines phosphorylated by glycogen synthase kinase-3, which are critical for the hormonal regulation of glycogen synthase in vivo. Although phosphorylation of site 5 does not affect the catalytic activity, it is demonstrated that this modification is a prerequisite for phosphorylation by glycogen synthase kinase-3. Since site 5 is almost fully phosphorylated in vivo under all conditions, the role of glycogen synthase kinase-5 would appear to be a novel one in forming the recognition site for another protein kinase  相似文献   

16.
17.
18.
A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin.  相似文献   

19.
Random transposon Tn5 mutagenesis of Bradyrhizobium sp. (Arachis) strain NC92, a member of the cowpea cross-inoculation group, was carried out, and kanamycin-resistant transconjugants were tested for their symbiotic phenotype on three host plants: groundnut, siratro, and pigeonpea. Two nodulation (Nod- phenotype) mutants were isolated. One is unable to nodulate all three hosts and appears to contain an insertion in one of the common nodulation genes (nodABCD); the other is a host-specific nodulation mutant that fails to nodulate pigeonpea, elicits uninvaded nodules on siratro, and elicits normal, nitrogen-fixing nodules on groundnut. In addition, nine mutants defective in nitrogen fixation (Fix- phenotype) were isolated. Three fail to supply symbiotically fixed nitrogen to all three host plants. Surprisingly, nodules elicited by one of these mutants exhibit high levels of acetylene reduction activity, demonstrating the presence of the enzyme nitrogenase. Three more mutants have partially effective phenotypes (Fix +/-) in symbiosis with all three host plants. The remaining three mutants fail to supply fixed nitrogen to one of the host plants tested while remaining partially or fully effective on the other two hosts; two of these mutants are Fix- in pigeonpea and Fix +/- on groundnut and on siratro, whereas the other one is Fix- on groundnut but Fix+ on siratro and on pigeonpea. These latter mutants also retain significant nodule acetylene reduction activity, even in the ineffective symbioses. Such bacterial host-specific fixation (Hsf) mutants have not previously been reported.  相似文献   

20.
Potent 3-anilino-4-arylmaleimide glycogen synthase kinase-3 (GSK-3) inhibitors have been prepared using automated array methodology. A number of these are highly selective, having little inhibitory potency against more than 20 other protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号