首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bacillus sp. strain PHN 1 capable of degrading p-cresol was immobilized in various matrices namely, polyurethane foam (PUF), polyacrylamide, alginate and agar. The degradation rates of 20 and 40 mM p-cresol by the freely suspended cells and immobilized cells in batches and semi-continuous with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 20 and 40 mM p-cresol than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF- immobilized cells could be reused for more than 35 cycles, without losing any degradation capacity and showed more tolerance to pH and temperature changes than free cells. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for degradation of p-cresol.  相似文献   

2.
The degradation of 3,5-dichlorocatechol by enzymes of 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 was studied. The following compounds were formed from 3,5-dichlorocatechol: trans-2-chloro-4-carboxymethylenebut-2-en-4-olide, cis-2-chloro-4-carboxymethylenebut-2-en-4-olide, and chloroacetylacrylate as the decarboxylation product of 2-chloromaleylacetate. They were identified by chromatographic and spectroscopic methods (UV, MS, PMR). An enzyme activity converting trans-2-chloro-4-carboxymethylenebut-2-en-4-olide into the cis-isomer was observed.Abbreviations 3CB 3-chlorobenzoate - 4CB 4-chlorobenzoate - 3,5DCB 3,5-dichlorobenzoate - 2,4D 2,4-dichlorophenoxyacetate - NOE Nuclear-Overhauser-Effect  相似文献   

3.
An organophosphate-degrading soil isolate of Pseudomonas sp. A3, immobilized at 5% (wet wt/v) cell mass in 3% (w/v) sodium alginate beads, detoxified 99% of 1 mm methylparathion in 48 h. The beads were re-usable for five batches, the sixth batch only giving 73% methylparathion removal.  相似文献   

4.
Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.  相似文献   

5.
R68.45 mediated mobilisation of the chromosome of Methylobacterium sp strain AM1 has been investigated. High frequencies of cotransfer of four genes required for C-1 metabolism with the genes coding for streptomycin, phosphonomycin and cycloserine resistance were demonstrated. A preliminary map of this region has been constructed on the basis of the results of three and four factor crosses showing that not all the C-1 genes are contiguous.Abbreviations Str streptomycin - Pho phosphonomycin - Cyc cycloserine - Tc tetracycline - Km kanamycin - Cb carbenicillin - Ade adenine - Thi thiamine - Met methionine  相似文献   

6.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

7.
Carbazole, carbazoles with monomethyl or dimethyls substituted on different positions (C1-carbazoles or C2-carbazoles), and benzocarbazoles, as toxic and mutagenic components of petroleum and creosote contamination, were biodegradable by an isolated bacterial strain Pseudomonas sp. XLDN4-9. C1-carbazoles were degraded in preference to carbazole and C2-carbazoles. The biodegradation of C1-carbazoles or C2-carbazoles was influenced by the positions of methyl substitutions. Among C1-carbazole isomers, 1-methyl carbazole was the most susceptible. C2-carbazole isomers with substitutions on the same benzo-nucleus were more susceptible at a concentration of less than 3.4 μg g−1 petroleum, especially when harboring one substitution on position 1. In particular, 1,5-dimethyl carbazole was the most recalcitrant dimethyl isomer.  相似文献   

8.
A facultative anaerobic bacterium, Pseudomonas sp. strain Chol1, degrading cholate and other bile acids was isolated from soil. We investigated how strain Chol1 grew with cholate and whether growth was affected by the toxicity of this compound. Under anoxic conditions with nitrate as electron acceptor, strain Chol1 grew by transformation of cholate to 7,12-dihydroxy-1,4-androstadiene-3,17-dione (DHADD) as end product. Under oxic conditions, strain Chol1 grew by transformation of cholate to 3,7,12-trihydroxy-9,10-seco-1,3,5(10)-androstatriene-9,17-dione (THSATD), which accumulated in the culture supernatant before its further oxidation to CO2. Strain Chol1 converted DHADD into THSATD by an oxygenase-dependent reaction. Addition of cholate (≥10 mM) to cell suspensions of strain Chol1 caused a decrease of optical density and viable counts but aerobic growth with these toxic cholate concentrations was possible. Addition of CCCP or EDTA strongly increased the sensitivity of the cells to 10 mM cholate. EDTA also increased the sensitivity of the cells to DHADD and THSATD (≤1.7 mM). The toxicity of cholate and its degradation intermediates with a steroid structure indicates that strain Chol1 requires a strategy to minimize these toxic effects during growth with cholate. Apparently, the proton motive force and the outer membrane are necessary for protection against these toxic effects.  相似文献   

9.
The maleylacetate reductase of 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 has been purified 50-fold. The enzyme converted 2-chloromaleylacetate to 3-oxoadipate with temporary occurrence of maleylacetate; 1 mol of chloride was eliminated during the conversion of 1 mol of 2-chloro- and 2,3-dichloromaleylacetate; 2 mol of NADH were consumed per mol of 2-chloro- and 2,3-dichloromaleylacetate while only 1 mol was necessary to catalyze the conversion of maleylacetate or 2-methylmaleylacetate. The maleylacetate reductase failed to use fumarylacetate as a substrate. The role of the enzyme in the chloroaromatics degradation is discussed.  相似文献   

10.
A bacterium, designated as Moraxella sp., was enriched with 2-hydroxyphenylglyoxylate (2HPGA) as sole source of carbon and energy. Identified metabolites and enzyme activities determined with whole cells and extracts indicated that 2HPGA was degraded by an inducible sequence of enzymes via salicylaldehyde, salicylate, and gentisate; only minute amounts of salicylate were converted to catechol. Further evidence was obtained that permeases were necessary for the uptake of most aromatic compounds utilized for growth. For the direct determination of 2HPGA decarboxylase activity, an enzyme assay involving high-performance liquid chromatography for quantitation of the substrate was developped to study the initial step of the degradative pathway.  相似文献   

11.
A Pseudomonas sp. strain NGK 1 (NCIM 5120) was immobilized in various matrices, namely, alginate, agar (1.8 × 1011 cfu g−1 beads) and polyacrylamide (1.6 × 1011 cfu g−1 beads). The degradation of naphthalene was studied, by freely suspended cells (4 × 1010 cfu ml−1) and immobilized cells in batches, with shaken culture and continuous degradation in a packed-bed reactor. Free cells brought about the complete degradation of 25 mmol naphthalene after 3 days of incubation, whereas, a maximum of 30 mmol naphthalene was degraded by the bacteria after 3–4 days of incubation with 50 mmol and 75 mmol naphthalene, and no further degradation was observed even after 15 days of incubation. Alginate-entrapped cells had degraded 25 mmol naphthalene after 3.5 days of incubation, whereas agar- and polyacrylamide-entrapped cells took 2.5 days; 50 mmol naphthalene was completely degraded by the immobilized cells after 6–7 days of incubation. Maximum amounts of 55 mmol, 70 mmol and 67 mmol naphthalene were degraded, from an initial 75 mmol naphthalene, by the alginate-, agar- and polyacrylamide-entrapped cells after 15 days of incubation. When the cell concentrations were doubled, 25 mmol and 50 mmol naphthalene were degraded after 2 and 5.5 days of incubation by the immobilized cells. Complete degradation of 75 mmol naphthalene occurred after 10 days incubation with agar- and polyacrylamide-entrapped␣cells, whereas only 60 mmol naphthalene was degraded by alginate-entrapped cells after 15 days of␣incubation. Further, with 25 mmol naphthalene, alginate-, agar- and polyacrylamide-entrapped cells (1.8 × 1011 cfu g−1 beads) could be reused 18, 12 and 23 times respectively. During continuous degradation in a packed-bed reactor, 80 mmol naphthalene 100 ml−1 h−1 was degraded by alginate- and polyacrylamide-entrapped cells whereas 80 mmol naphthalene 125 ml−1␣h−1 was degraded by agar-entrapped cells. Received: 21 October 1997 / Received revision: 15 January 1998 / Accepted: 18 January 1998  相似文献   

12.
The range of substituted naphthalenesulfonates which are metabolized by Pseudomonas sp. BN6 were investigated. Resting cells from strain BN6 oxidized 1- and 2-naphthalenesulfonate, 1-hydroxynaphthalene-2-sulfonate, 2,6-naphthalenedisulfonate and all monosulfonated naphthalene-2-sulfonates which carry one or two substitutents in the positions 4-, 5-, 6-, 7- or 8- of the naphthalene ring-system. With the exception of (substituted) 4- or 5-amino- and 4-hydroxynaphthalene-2-sulfonates these compounds were converted to the corresponding salicylates. Strain BN6 did not oxidize substituted naphthalene-1-sulfonates, 3-substituted naphthalenesulfonates and substituted naphthalenedisulfonates. Turnover of 4-amino- or 4-hydroxynaphthalene-2-sulfonates resulted in the accumulation of the corresponding naphthoquinones in the culture medium. Thus, degradation of 4-amino- and 4-hydroxynaphthalenesulfonates was restricted by the rapid autoxidation of the substituted 1,2-dihydroxynaphthalenes formed as metabolites. Catabolic activities of strain BN6 for naphthalenesulfonates were induced by salicylate, 3- or 6-hydroxysalicylate, and 3-, 4- or 5-aminosalicylate but not by 4- and 5-hydroxysalicylate. All naphthalenesulfonates that were not converted into the corresponding salicylates, were found to be inefficient as effectors. It was therefore concluded that (substituted) salicylates are the inducers of the relevant enzymes. The degradation of 2-naphthalene-sulfonate by a pure culture of strain BN6 was prevented by the toxicity of the dead-end product salicylate. Substituted salicylates were less toxic and allowed growth of strain BN6 in axenic culture with various substituted naphthalenesulfonates.Abbreviations AB aminobenzoate - ANS aminonaphthalenesulfonate - DHN dihydroxynaphthalene - DHNC dihydroxynaphthalene-carboxylate - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBPA 2-hydroxybenzalpyruvate aldolase - HNS hydroxynaphthalenesulfonate - HS hydroxysalicylate - Ind-C indolecarboxylate - Ind-S indolesulfonate - MANS N-methylaminonaphthalenesulfonate - NC naphthalenecarboxylate - NDS naphthalenedisulfonate - NQ naphthoquinone - NS naphthalenesulfonate - NSDO naphthalenesulfonate dioxygenase - Rt retention time - SADH salicylaldehyde dehydrogenase - THN trihydroxynaphthalene (hydroxy-1,2-dihydroxynaphthalene)  相似文献   

13.
Biodegradation of phenol has been investigated using a bacterial consortium consisting of two bacterial isolates; one of them used for the first time in phenol biodegradation. This consortium was isolated from activated sludge and identified as Providencia stuartii PL4 and Pseudomonas aeruginosa PDM (accession numbers KY848366 and MF445102, respectively). The degradation of phenol by this consortium was optimal at pH 7 with using 1500?mg?l?1 ammonium chloride as a nitrogen source. Interestingly, after optimizing the biodegradation conditions, this consortium was able to degrade phenol completely up to 1500?mg?l?1 within 58?h. The immobilization of this consortium on various supporting materials indicated that polyvinyl alcohol (PVA)-alginate beads and polyurethane foam (PUF) were more suitable for biodegradation process. The freely suspended cells could degrade only 6% (150?mg?l?1) of 2500?mg?l?1 phenol, whereas, the immobilized PVA-alginate beads and the immobilized PUF degraded this concentration completely within 120?h of incubation with degradation rates (q) 0.4839 and 0.5368 (1/h) respectively. Thus, the immobilized consortium of P. stuartii PL4 and P. aeruginosa PDM can be considered very promising in the treatment of effluents containing phenol.  相似文献   

14.
A phenanthrene-mineralizing Pseudomonas sp., designated UG14, was isolated from creosote-contaminated soil. It contained two plasmids, of approximately 77 kb and 76 kb, the smaller of which contained DNA sequences that hybridized with probes specific for ndoB and xylE, genes involved in catabolism of aromatic hydrocarbons. At initial phenanthrene concentrations of 10, 50, 200 and 1000 mg/l broth, 27%, 19%, 7.7% and 3.3%, respectively, of the [9-14C]phenanthrene was recovered as 14CO2 after 36 days' incubation at 30°C. Most 14C-label was converted to a water-soluble metabolite tentatively identified as 1-hydroxy-2-naphthoic acid. Rhamnolipid biosurfactants produced by P. aeruginosa UG2 enhanced mineralization of 50 mg phenanthrene/l by Pseudomonas sp. UG14. With the biosurfactant at 0, 25 and 250 mg rhamnose equivalents/l, 6.5%, 8.2% and 9.8%, respectively, of the phenanthrene was mineralized after 35 days.M.A. Providenti, H. Lee and J.T. Trevors are with the Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; C.W. Greer is with the National Research Council Canada, Biotechnology Research Institute, 6100 Royalmount Ave, Montreal, Quebec, H4P 2R2, Canada.  相似文献   

15.
Abstract A Pseudomonas sp. strain WR401 was isolated for growth on 3-, 4-, and 5-methylsalicylate. The organism was capable of growth on o -toluate. The data on enzyme activities in cell-free extracts, DHB dehydrogenase and catechol 2,3-dioxygenase, as well as the cooxidation of the substrate analog 2-chlorobenzoate yielding 3-chlorocatechol indicated a pathway for o -toluate degradation through 6-methyldihydrodihydroxybenzoate, 3-methylcatechol and further through the meta -pathway. In contrast to other toluate dioxygenating enzymes found in m - and p -toluate degrading organisms, strain WR401 was able to dioxygenate a wider range of chlorobenzoates including 2-chlorobenzoate.  相似文献   

16.
Abstract

Pseudomonas sp. lipase (PSL) immobilization was performed using three different protocols. Lipase immobilized on Diaion HP20 (HP20-PSL) exhibited the highest catalytic activity and stability in the kinetic resolution of racemic 2-octanol. The reaction rate of HP20-PSL was approximately 20 times higher than that of free PSL and the residual activities of HP20-PSL and free PSL were respectively 84% and 19% after incubation in the reaction medium for 72 h. A study of the effect of different reaction parameters on HP20-PSL-catalyzed resolution of (R,S)-2octanol showed that the optimal water content of the immobilized matrix and the optimal molar ratio of vinyl acetate to 2-octanol were 60 ± 5% and 2.5:1, respectively. Under the optimized reaction conditions, (S)-2-octanol of high optically purity (enantiomeric excess > 99%) could be recovered at 53% conversion rate, and HP20-PSL could be reused for ten cycles without significant decrease in its activity and enantioselectivity.  相似文献   

17.
18.
Zhang Y  Wu JF  Zeyer J  Meng B  Liu L  Jiang CY  Liu SQ  Liu SJ 《Biodegradation》2009,20(1):55-66
Comamonas sp. strain CNB-1 can utilize 4-chloronitrobenzene (4CNB) as sole carbon and nitrogen source for growth. Previous studies were focused on 4CNB degradative pathway and have showed that CNB-1 contained a plasmid pCNB1 harboring the genes (cnbABCaCbDEFGH, cnbZ) for the enzymes involving in 4CNB degradation, but only three gene products (CnbCa, CnbCb, and CnbZ) were identified in CNB-1 cells. Comamonas strain CNB-2 that lost pCNB1 was not able to grow on 4CNB. In this study, physiological adaptation to 4CNB by CNB-1 was investigated with proteomic and molecular tools. Comparative proteomes of strains CNB-1 and CNB-2 grown on 4CNB and/or succinate revealed that adaptation to 4CNB by CNB-1 included specific degradative pathway and general physiological responses: (1) Seven gene products (CnbA, CnbCa, CnbCb, CnbD, CnbE, CnbF, and CnbZ) for 4CNB degradation were identified in 4CNB-grown cells, and they were constitutively synthesized in CNB-1. Two genes cnbE and cnbF were cloned and simultaneously expressed in E. coli. The CnbE and CnbF together catalyzed the conversion of 2-oxohex-4-ene-5-chloro-1,6-dioate into 2-oxo-4-hydroxy-5-chloro-valeric acid; (2) Enzymes involving in glycolysis, tricarboxylic acid cycle, and synthesis of glutamate increased their abundances in 4CNB-grown cells.  相似文献   

19.
Summary To exploit alginate lyase which could degrade bacterial alginates, degenerate PCR and long range-inverse PCR (LR-IPCR) were used to isolate alginate lyase genes from soil bacteria. Gene algL, an alginate lyase-encoding gene from Pseudomonas sp. QD03 was cloned, and it was composed of a 1122 bp open reading frame (ORF) encoding 373 amino acid residues with the calculated molecular mass of 42.2 kDa. The deduced protein had a potential N-terminal signal peptide of 20 amino acid residues that was consistent with its proposed periplasmic location. Gene algL was expressed in pET24a (+)/E. coli BL21 (DE3) system. The recombinant AlgL was purified to electrophoretic homogeneity using affinity chromatography. The molecular weight of AlgL was estimated to be 42.8 kDa by SDS-PAGE. AlgL exhibited maximal activity at pH 7.5 and 37 °C. Na+, K+, Ca2+ and Ba2+ significantly enhanced the activity of AlgL. AlgL could degrade alginate and mannuronate blocks, but hardly degrade guluronate blocks. In particular, AlgL could degrade acetylated alginate of Pseudomonas aeruginosa FRD1 (approximately 0.54 mol of O-acetyl group per mol of alginate). It might be possible to use alginate lyase AlgL as an adjuvant therapeutic medicine for the treatment of disease associated with P. aeruginosa infection.  相似文献   

20.
An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号