首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural development of grain tissues of maternal origin in normal and seg1 barley (Hordeum vulgare L. cv. Betzes) was examined using light and electron microscopy. Chalaza and seedcoat cells of normal grains developed prominent tannin vacuoles which persisted throughout the grain-filling period. Tannins were present in the same tissues of seg1, but no large central vacuoles developed. Instead, the chalaza and nucellar projection degenerated and were crushed, presumably terminating sugar flow and causing formation of shrunken grains (35–55% normal dry weight). Tannins were localized using various histochemical stains. Extracts of chalaza and adjacent tissues contained proanthocyanidins which yielded delphinidin and cyanidin upon hydrolysis in boiling HCl. We suggest that the basis of the seg1 phenotype may be abnormal compartmentation of tannins causing precipitation of cytoplasmic proteins and early death of chalazal cells.Abbreviations FAA Formalin-acetic acid-ethanol - PAS periodic acid Schiffs reagent  相似文献   

2.
RAO  K. S. 《Annals of botany》1988,62(6):575-581
The fine structure of autumn cambial cells of Aesculus hippocastanumand Populus x euramericana reveals the presence of electron-densebodies, other than lipids, in both the cytoplasm and vacuoles.These deposits are identified as tannins following a cytochemicaltest with ferrous sulphate. Small tannin bodies associated withthe strands of ER and inside small vesicles are often evidentin the cytoplasm. The cytoplasmic tannins are deposited intovacuoles by fusion of the tannin-containing vesicles with thetonoplast. The positive reaction of tannin inclusions with periodicacid-thiocarbohydrazide-silver proteinate suggests their polysaccharidicnature. The observations support the role of ER in tannin synthesisand deposition into the central vacuole. Aesculus hippocastanum, Populus x euramericana, cambial cells, tannin, vacuoles  相似文献   

3.
Cells of Chlamydomonas reinhardtii Dangeard strain cw15arg7A contain electron-opaque material, often in the form of large granules, within cytoplasmic vacuoles. Immunoelectron microscopy with antibodies to polypeptide 11, a component of the major light-harvesting chlorophyll (Chl) a/b-protein complex (LHCII,) of thylakoid membranes, revealed the presence of LHCII Polypeptides within the chloroplast and in vacuolar material in cells grown in the light. Vacuolar material was also heavily immunodecorated in dark-grown cells that did not synthesize Chl. Accumulation of LHCII polypeptides was further studied in greening and light-grown cells of a pale green mutant, deficient in LHCII, that was derived from cu15arg7A by insertional mutagenesis. Light-grown cells of this mutant strain contained relatively few thylakoid membranes and synthesized LHCII polypeptides at a low rate. However, cytoplasmic vacuoles were immunoreactive. Appearance of mature-sized LHCII polypeptides in vacuoles suggested that these proteins were partially translocated across the envelope but not retained by the chloroplast without assembly of LHCII.  相似文献   

4.
Summer and winter (July and January) samples of secondary phloem of Tilia americana were studied with the electron microscope. Parenchyma cells contain: nuclei, endoplasmic reticulum, ribosomes, plastids, mitochondria and occasional dictyosomes. Well-defined tonoplasts separate vacuoles from cytoplasmic ground substance. Vacuoles often contain tannins. Lipid droplets are common in cytoplasm. Endoplasmic reticulum–connected plasmodesmata are aggregated in primary pit fields. Companion cells differ from parenchyma cells in having numerous sieve-element connections, possibly slime, and in lacking plastids. Mature, enucleate sieve elements possess 1–4 extruded nucleoli. Numerous vesicles occupy a mostly parietal position in association with plasmalemma. The mature sieve element lacks endoplasmic reticulum, organelles (except for few mitochondria) and tonoplast. In OsO4– and glutaraldehyde-fixed elements, slime has a fine, fibrillar appearance. Normally, these fine fibrils are organized into coarser ones which form strands that traverse the cell and the plasmalemma-lined pores of sieve plates and lateral sieve areas.  相似文献   

5.
Park J  Knoblauch M  Okita TW  Edwards GE 《Planta》2009,229(2):369-382
Bienertia sinuspersici Akhani has an unusual mechanism of C4 photosynthesis which occurs within individual chlorenchyma cells. To perform C4, the mature cells have two cytoplasmic compartments consisting of a central (CCC) and a peripheral (PCC) domain containing dimorphic chloroplasts which are interconnected by cytoplasmic channels. Based on leaf development studies, young chlorenchyma cells have not developed the two cytoplasmic compartments and dimorphic chloroplasts. Fluorescent dyes which are targeted to membranes or to specific organelles were used to follow changes in cell structure and organelle distribution during formation of C4-type chlorenchyma. Chlorenchyma cell development was divided into four stages: 1—the nucleus and chloroplasts occupy much of the cytoplasmic space and only small vacuoles are formed; 2—development of larger vacuoles, formation of a pre-CCC with some scattered chloroplasts; 3—the vacuole expands, cells have directional growth; 4—mature stage, cells have become elongated, with a distinctive CCC and PCC joined by interconnecting cytoplasmic channels. By staining vacuoles with a fluorescent dye and constructing 3D images of chloroplasts, and by microinjecting a fluorescence dye into the vacuole of living cells, it was demonstrated that the mature cell has only one vacuole, which is traversed by cytoplasmic channels connecting the CCC with the PCC. Immunofluorescent studies on isolated chlorenchyma cells treated with cytoskeleton disrupting drugs suspended in different levels of osmoticum showed that both microtubules and actin filaments are important in maintaining the cytoplasmic domains. With prolonged exposure of plants to dim light, the cytoskeleton undergoes changes and there is a dramatic shift of the CCC from the center toward the distal end of the cell.  相似文献   

6.
The ion content of compartments within cortical cells of mature roots of the halophyte Suaeda maritima grown at 200 mol·m-3 NaCl has been studied by X-ray microanalysis of freeze-substituted thin sections. Sodium and Cl were found in the vacuoles at about four-times the concentration in the cytoplasm or cell walls, whereas K was more concentrated in the cell walls and cytoplasm than in vacuoles. The vacuolar Na concentration was 12- to 13-times higher than that of K. The Na concentration of cell walls of cortical cells was about 95 mol·m-3 of analysed volume. The cytoplasmic K concentration within the mature cortical cells was estimated to be 55 mol·m-3 of analysed volume.  相似文献   

7.
After the membrane impermeant dye Lucifer Yellow is introduced into the cytoplasmic matrix of J774 cells, the dye is sequestered within cytoplasmic vacuoles and secreted into the extracellular medium. In the present work we studied the intracellular transport of Lucifer Yellow in J774 macrophages and the nature of the cytoplasmic vacuoles into which this dye is sequestered. When the lysosomal system of J774 cells was prelabeled with a Texas red ovalbumin conjugate and Lucifer Yellow was then loaded into the cytoplasm of the cells by ATP-mediated permeabilization of the plasma membrane, the vacuoles that sequestered Lucifer Yellow 30 min later were distinct from the Texas red-stained lysosomes. After an additional 30 min Lucifer Yellow and Texas red colocalized in the same membrane bound compartments, indicating that the Lucifer Yellow had been delivered to lysosomes. We next prelabeled the plasma membrane of J774 cells with anti-macrophage antibody and Texas red protein A before Lucifer Yellow was loaded into the cells. The phase-lucent vacuoles that subsequently sequestered Lucifer Yellow also stained with Texas red, showing that they were part of the endocytic pathway. J774 cells were fractionated on percoll density gradients either 15 or 60 min after Lucifer Yellow was introduced into the cytoplasmic matrix of the cells. In cells fractionated after 15 min, Lucifer Yellow was contained within the fractions of light buoyant density that contain plasma membrane and endosomes; the dye later appeared in vesicles of higher density which contained lysosomes. Secretion of Lucifer Yellow from the cytoplasmic matrix of J774 cells is inhibited by the organic anion transport blocker probenecid. We found that probenecid also reversibly inhibited sequestration of dye, indicating that sequestration of dye within cytoplasmic vacuoles was also mediated by organic anion transporters. These studies show that the vacuoles that sequester Lucifer Yellow from the cytoplasmic matrix of J774 cells possess the attributes of endosomes. Thus, in addition to their role in sorting of membrane bound and soluble substances, macrophage endosomes may play a role in the accumulation and transport of molecules resident in the soluble cytoplasm.  相似文献   

8.
Komine Y  Eggink LL  Park H  Hoober JK 《Planta》2000,210(6):897-905
The alga Chlamydomonas reinhardtii contains cytoplasmic vacuoles that are often filled with a dense granule that is released from the cell by exocytosis. Purified granules contained polyphosphate, complexed with calcium and magnesium, as the predominant inorganic components. Antiserum was raised against the major 70-kDa protein in granules purified from wall-deficient (cw15) mutants, which reacted on immunoblots with larger glycoprotein complexes in purified cell wall fractions from wild-type cells. Confocal fluorescence microscopy detected binding of these antibodies predominantly at the periphery of wall-containing C. reinhardtiiy1 cells but primarily to loci in the interior of cells of the cw15 strain. Immunoelectron microscopy demonstrated that the 70-kDa protein was localized in vacuolar granules and the trans-Golgi network in sections of cw15 cells but not in the cytosol or chloroplast. Treatment of cells with a dye, fluorescent in its protonated form, indicated that the pH within vacuoles was lower than that in the cytosol, which suggested that the vacuoles are similar to lysosomes. Thus, the vacuoles may serve a dual function to provide an environment for degradation within the cell and also serve as a vehicle for secretion of specific proteins. Received: 29 September 1999 / Accepted: 20 November 1999  相似文献   

9.
The guard cells of Opuntia contain numerous mitochondria, elements of endoplasmic reticulum, dictyosomes, and microbodies. A complex array of small to large vacuoles which contain small, membrane-bounded vesicles occur in each guard cell. The variety of cytoplasmic constituents and vacuoles suggest that the guard cells are complex in function. A highly reduced grana-fretwork system within the plastids indicates that the photosynthetic capacity of the guard cells is probably rather low. No plasmodesmata occur in the walls between the guard cells and the subsidiary cells while there are numerous invaginations of the guard cell plasmalemmas. Many of the variations in the plasmalemma probably indicate that the plasmalemma is a highly active interface.  相似文献   

10.
SYNOPSIS. Fine structure and development of Encephalitozoon cuniculi from rabbits were studied in rabbit choroid plexus (CP) cell cultures and were compared to hamster and mouse microsporida. Sporoplasms had a single limiting membrane and contained a large nucleus. Proliferative forms (schizonts) had double outer membranes, the outermost being associated with the formation of the limiting membrane of vacuoles formed within the host cell cytoplasm. These organisms were often binucleate and divided to form sporonts. Sporonts divided once to form 2 sporoblasts which developed into electron-dense spores. Spores had a thick, 3-layered wall and contained a polar filament. The developmental cycle of E. cuniculi in rabbit CP cultures progressed rapidly. Sporoplasms were observed in host cells at 3 hr postinoculation (PI). By 24 hr PI proliferative forms were associated with host cell cytoplasmic vacuoles which contained developing organisms. Mature spores were present in vacuoles by 2 days PI, indicating that the life cycle in the CP system is ∼ 48 hr. The fine structure and the sequential developmental cycle of the mouse and hamster isolates were observed to be identical to those of the rabbit isolate and different from those of the genus Nosema. It is proposed, therefore, that the 3 organisms represent the same species, Encephalitozoon cuniculi.  相似文献   

11.
Mouse macrophages exposed to 30 µg/ml of chloroquine in vitro develop autophagic vacuoles containing various cytoplasmic components and acid phosphatase. The early toxic vacuoles appear in the perinuclear region within 15 min; on electron microscopy, they show irregular shape, amorphous moderately dense content, apparent double membranes, and in some instances curved thin tubular extensions with a central, dark linear element. Cytoplasmic structures are probably transported into the vacuoles by invagination of the vacuolar membrane. After exposure to chloroquine for 1–4 hr, macrophages display large vacuoles containing degraded cytoplasmic structures, membranous whorls, and amorphous material. When chloroquine is removed by changing the culture medium after 4 hr, the cells survive and 24 hr later they exhibit no abnormality except for large cytoplasmic dense bodies packed with membrane lamellae. During recovery chloroquine disappears from the cells. 24 hr after exposure to chloroquine the macrophages have accumulated less hydrolases than control cells.  相似文献   

12.
Living, unstained, single tobacco (Nicoliana tabacum × N. glutinosa) cells (clone H-196) were grown in microcultures in liquid medium containing sucrose, mineral salts, coconut milk and 2,4-dichlorophenoxyaeetic acid. Time-lapse motion pictures were taken through interference and phase microscopes. The movement of cytoplasm and cell organelles gradually slowed and ultimately completely ceased as the cell was cooled by dry ice. The cessation of the movement of cell organelles took place between 5 and –7C. The typical cytoplasmic morphology was lost as the movement slowed. The cytoplasmic strands thinned out and numerous small vacuoles formed. During rewarming of the cell to room temperature, the vacuoles were replaced by numerous small globular masses of cytoplasm which reorganized into cytoplasmic strands. The normal movement of cytoplasmic strands and cell organelles was resumed. A number of small nucleolar vacuoles at room temperature gradually expanded and coaleseed to form a large central vacuole which underwent further expansion and then contracted rapidly. Four different concentric zones were visible across the nucleolar region. A white, highly reflecting, glossy substance appeared on the surface of the expanding vacuole. The position of the nucleus during contraction and expansion was never stationary. Some nucleolar vacuoles remained open for an indefinite period of time when the cell was cooled to 5C. No change was noticed during cooling, but during rewarming to room temperature, the nucleolar vacuole was partially closed. The pumping action of the nucleolar vacuole suggested important exchanges of metabolites between the nucleolus and the cytoplasm. A single cell of tobacco did not divide at –10C, but mitosis proceeded upon cooling the cell to – 12–15C for a brief period. Different phases of mitosis, specifically formation of the cell plate, cell wall, and separation of nuclei, were delayed by low temperature treatment.  相似文献   

13.
SYNOPSIS. The kinetics of transfer of tritium-labeled material from the DNA of ingested bacteria into macronuclear DNA of Paramecium was examined by autoradiography. Bacteria labeled with tritiated thymidine were almost immediately incorporated into food vacuoles, thus becoming available for digestion and a potential source of labeled DNA precursors. Soluble label derived from food vacuoles appeared in low concentrations in the cytoplasm soon after cells were transferred to medium with labeled bacteria; incorporation of labeled precursors into macronuclear DNA began within 5 min. Labeled food vacuoles remained as potential sources of tritiated DNA precursors for a long and variable period after removal of labeled cells to non-labeled medium. The activity of the soluble cytoplasmic DNA precursors decreased parallel to the loss of labeled food vacuoles and no soluble DNA precursors were carried over from one macronuclear DNA synthetic period to the next. Labeling experiments were designed, using this information, which allowed determination of the pattern of macronuclear DNA synthesis and nuclear mass increase during the cell cycle. Macronuclear DNA synthesis began 25–30% of the way thru the cell cycle, continued at a constant rate during the middle half, and decreased in rate during the last quarter. Macronuclear mass increased in an approximately linear fashion, beginning with the onset of DNA synthesis and doubling by the time of karyokinesis.  相似文献   

14.
15.
F Jones  C Grose 《Journal of virology》1988,62(8):2701-2711
Varicella-zoster virus (VZV) encodes several glycoproteins which are present on both mature viral envelopes and the surfaces of infected cell membranes. Mechanisms of VZV glycoprotein transport and virion envelopment were investigated by both continuous radiolabeling and pulse-chase analyses with tritiated fucose in VZV-infected cells. We studied in detail the large cytoplasmic vacuoles which were present in infected cells but absent from uninfected cells. The specific activity in each subcellular compartment was defined by quantitative electron microscope autoradiography, using a cross-fire probability matrix analysis to more accurately assess the individual compartment demarcated by the silver grains. By these techniques, we documented a progression of activity originating in the Golgi apparatus and traveling through the post-Golgi region into virus-induced cytoplasmic vacuoles and finally to areas of the cellular membrane associated with the egress of viral particles. Significant amounts of radiolabel were not observed in the nucleus, and only low levels of radiolabel were associated with the cellular membrane not involved with the egress of viral particles. In addition, immunolabeling of Lowicryl-embedded VZV-infected cells demonstrated the presence of VZV glycoproteins within cytoplasmic vacuole membranes as well as on virion envelopes. These observations suggested that cytoplasmic vacuoles harbored VZV-specified glycoproteins and were also the predominant site of VZV virion envelopment within the infected cell. Neither enveloped nor unenveloped viral particles were observed within the Golgi apparatus itself.  相似文献   

16.
Pick U  Weiss M 《Plant physiology》1991,97(3):1234-1240
The location and mobilization of polyphosphates in response to an amine-induced alkaline stress were studied in the halotolerant alga Dunaliella salina. The following observations suggest that polyphosphates accumulate in acidic vacuoles: (a) Accumulation of large amounts of polyphosphates is manifested as intravacuolar dense osmiophilic bodies in electron micrographs. (b) Uptake of amines into the vacuoles induces massive hydrolysis of polyphosphates, demonstrated by in vivo 31P-nuclear magnetic resonance, and by analysis of hydrolytic products on thin layer chromatograms. The analysis indicates that: (a) Polyphosphate hydrolysis is kinetically correlated with amine accumulation and with the recovery of cytoplasmic pH. (b) The major hydrolytic product is tripolyphosphate. (c) The peak position of the tripolyphosphate terminal phosphate in nuclear magnetic resonance spectra is progressively shifted as the cells recover, indicating that the pH inside the vacuoles increases while the pH in the cytoplasm decreases. (d) In lysed cell preparations, in which vacuoles become exposed to the external pH, mild alkalinization in the absence of amines induces polyphosphate hydrolysis to tripolyphosphates. It is suggested that amine accumulation within vacuoles activates a specific phosphatase, which hydrolyzes long-chain polyphosphates to tripolyphosphates. The hydrolysis increases the capacity of the vacuoles to sequester amines from the cytoplasm probably by releasing protons required to buffer the amine, and leads to recovery of cytoplasmic pH. Thus, polyphosphate hydrolysis provides a high-capacity buffering system that sustains amine compartmentation into vacuoles and protects cytoplasmic pH.  相似文献   

17.
Abstract The thymus of the sole Solea solea contained lymphoblasts and thymocytes within a network of pale and dark epithelial cells. The pale cells were characterized by tonofilaments and desmosomes and some embraced rodlet cells within their cytoplasmic processes. The dark epithelial cells had numerous electron-dense inclusions and electron-lucent vacuoles. Lymphocytes were closely associated with the plasma membrane of both types of epithelial cells and with macrophages. Breakdown of effete lymphocytes appeared to be the main function of the macrophages. Some macrophages were multinucleated. Those containing melanin granules associated with phagosomes were classified as melanomacrophages. Pigment cells including melanophores and guanophores were present along the connective tissue trabeculae and surrounding the blood vessels. A few plasma cells and mucous cells were present.  相似文献   

18.
The vacuolar apparatus of various plant cells consists of two distinct features: the large central vacuole and peripheral vacuoles which are derived from invaginations of the plasma membrane. Peripheral vacuoles are conspicuous structures in both living and fixed hair or filament cells of Tradescantia virginiana. They occur as spherical structures along the inner boundary of the peripheral cytoplasm and can be recognized as projections into the central vacuole. These structures are variable in size and number within a cell and can represent a significant proportion of the volume of the vacuole. Peripheral vacuoles most frequently are observed in motion with the streaming cytoplasm although their velocity is usually somewhat slower that that of the cytoplasmic organelles. Ultrastructural studies show two closely approximated membranes, one for each vacuole, in areas where a peripheral vacuole projects into the central vacuole. These are separated by an intermembrane zone continuous with the peripheral cytoplasm. The movement of organelles over the perimeter of the peripheral vacuole is presumed to occur along this intermembrane zone. The internal area of the peripheral vacuoles may appear empty although some contain a vesicular content of unknown origin and function.  相似文献   

19.
Summary The vacuoles occurring in rat hepatocytes after intraportal injection of retinol (33 or 67 g) were examined immunohistochemically using respective antibodies against rat albumin, human retinol-binding protein, human ceruloplasmin, human 1-antitrypsin, human transferrin, and human prealbumin as representative plasma proteins. The occurrence of the vacuoles reached a numerical maximum 30 min after injection of 67 g retinol, followed by a temporal decrease. Hepatocytes from control rats, which had been intraportally injected with either blood plasma diluted to 2/3 concentration or with retinol palmitate solvent (castor oil) dissolved in blood plasma, showed immunoreactive fine granules without the occurrence of vacuoles in the cytoplasm. Identical vacuoles in serial sections appeared immunohistochemically either immunoreactive or non-immunoreactive for all the antibodies used, with rare exceptions. The occurrence of several rare exceptions suggested that 2 kinds of vacuoles might be formed in different cytoplasmic compartments. A zonal distribution of vacuoles was apparent in the hepatic laminae (or acini) within the liver lobules. The vacuoles were predominantly distributed in zone 2, and to a lesser extent in zone 3 and zone 1 in that order.  相似文献   

20.
Recombinant human colony-stimulating factor-1-treated human peripheral blood-derived monocytes-macrophages are efficient host cells for recovery of the human immunodeficiency virus (HIV) from blood leukocytes of patients with acquired immunodeficiency syndrome. These cells can be maintained as viable monolayers for intervals exceeding 3 months. Infection with HIV resulted in virus-induced cytopathic effects, accompanied by relatively high levels of released progeny virus, followed by a prolonged low-level release of virus from morphologically normal cells. In both acutely and chronically infected monocytes, viral particles were seen budding into and accumulating within cytoplasmic vacuoles. The number of intravacuolar virions far exceeded those associated with the plasma membrane, especially in the chronic phase, and were concentrated in the perinuclear Golgi zone. In many instances, the vacuoles were identified as Golgi elements. Fusion of virus-laden vacuoles with primary lysosomes were rare. The pattern of cytoplasmic assembly of virus was observed with both HIV types 1 and 2 and in brain macrophages of an individual with acquired immunodeficiency syndrome encephalopathy. Immunoglobulin-coated gold beads added to acutely infected cultures were segregated from the vacuoles containing virus; relatively few beads and viral particles colocalized. The assembly of HIV virions within vacuoles of macrophages is in contrast to the exclusive surface assembly of HIV by T lymphocytes. Intracytoplasmic virus hidden from immune surveillance in monocytes-macrophages may explain, in part, the persistence of HIV in the infected human host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号