首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hatton GI 《Peptides》2004,25(3):403-411
After commenting on some perceived reasons why our review may have been relatively frequently cited, a brief overview is presented that first summarizes what we knew 25 years ago about the dynamic neuronal-astroglial interactions that occur in response to changes in the physiological state of the animal. The brain system in which these dynamic interactions were studied was the magnocellular hypothalamo-neurohypophysial system (mHNS) of the rat. The mHNS developed as and continues to be the model system yielding the most coherent picture of dynamic morphological changes and insights into their functional consequences. Many other brain areas, however, have more recently come under scrutiny in the search for glial-neuronal dynamisms. Outlined next are some of the questions concerning this phenomenon that led to the research efforts immediately following the initial discoveries, along with the answers, both complete and incomplete, obtained to those research questions. The basis for this first wave of follow-up research can be characterized by the phrase "what we knew we didn't know at that time." The final section is an update and brief overview of highlights of both "what we know now" and "what we now know that we don't know" about dynamic neuronal-astroglial interactions in the mHNS.  相似文献   

2.
The ongoing merge between engineering and biology has contributed to the emerging field of synthetic biology. The defining features of this new discipline are abstraction and standardisation of biological parts, decoupling between parts to prevent undesired cross-talking, and the application of quantitative modelling of synthetic genetic circuits in order to guide their design. Most of the efforts in the field of synthetic biology in the last decade have been devoted to the design and development of functional gene circuits in prokaryotes and unicellular eukaryotes. Researchers have used synthetic biology not only to engineer new functions in the cell, but also to build simpler models of endogenous gene regulatory networks to gain knowledge of the "rules" governing their wiring diagram. However, the need for innovative approaches to study and modify complex signalling and regulatory networks in mammalian cells and multicellular organisms has prompted advances of synthetic biology also in these species, thus contributing to develop innovative ways to tackle human diseases. In this work, we will review the latest progress in synthetic biology and the most significant developments achieved so far, both in unicellular and multicellular organisms, with emphasis on human health.  相似文献   

3.
To understand speciation, we first need to know what species are. Yet debates over species concepts have seemed endless, with little obvious relevance to the study of speciation. Recently, there has been progress in resolving these debates, favoring a lineage-based, evolutionary species concept. This progress calls for reconsideration of the study of speciation. Traditional speciation research based on the biological species concept has led to great advances in understanding how nonallopatric speciation occurs and how species diverge and remain separate from each other. However, this research has neglected the question of how new species arise in the first place for the most common geographic mode (allopatric). A new and very different research program is needed to understand the ecological and evolutionary processes that split an ancestral species into new allopatric lineages. This research program will connect speciation to many other fundamental questions in evolutionary biology, ecology, biogeography, and conservation biology.  相似文献   

4.
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.  相似文献   

5.
From the analysis of protein complexes to proteome-wide linkage maps   总被引:4,自引:0,他引:4  
Recent advances in genomics have led to the accumulation of an unprecedented amount of data about genes. Proteins, not genes, however, sustain function. The traditional approach to protein function analysis has been the design of smart genetic assays and powerful purification protocols to address very specific questions concerning cellular mechanisms. Lately, a number of proteome-wide functional strategies have emerged, giving rise to a new field in biology, proteomics, that addresses the biology of a cell as a whole.  相似文献   

6.
The advent of any new technology is typically met with great excitement. So it was a few years ago, when the combination of advances in sequencing technology and the development of microarray technology made measurements of global gene expression in ecologically relevant species possible. Many of the review papers published around that time promised that these new technologies would revolutionize environmental biology as they had revolutionized medicine and related fields. A few years have passed since these technological advancements have been made, and the use of microarray studies in non‐model fish species has been adopted in many laboratories internationally. Has the relatively widespread adoption of this technology really revolutionized the fields of environmental biology, including ecotoxicology, aquaculture and ecology, as promised? Or have these studies merely become a novelty and a potential distraction for scientists addressing environmentally relevant questions? In this review, the promises made in early review papers, in particular about the advances that the use of microarrays would enable, are summarized; these claims are compared to the results of recent studies to determine whether the forecasted changes have materialized. Some applications, as discussed in the paper, have been realized and have led to advances in their field, others are still under development.  相似文献   

7.
Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions.
“We have entered the cell, the Mansion of our birth, and started the inventory of our acquired wealth.”—Albert Claude
When I first read that morsel from Albert Claude’s 1974 Nobel Prize lecture it seemed Solomonic wisdom, as it indeed was. Though he was referring to cell biology en toto, the study of the nucleus was then at a tipping point and new advances were just at hand. Since then, the nucleus field has literally nucleated and we are now at a position to both admire the recent past and register excitement about the present and where the nucleus field may be headed.  相似文献   

8.
One hundred years ago, we knew very little about biological macromolecules and had no tools available to study their structure. Structural biology is now a mature science. New structures are being solved at an ever-increasing rate and there are important new initiatives to determine all the protein folds that are used by biological systems (structural genomics). This article traces some of the key developments in the field.  相似文献   

9.
The distal gut and its associated microbiota is a new frontier in the quest to understand human biology and evolution. The renaissance in this field has been partly driven by advances in sequencing technology and also by the application of a variety of 'omic' technologies in a systems biology framework. In the initial stages of understanding what constitutes the gut, culture-independent methods, primarily inventories of 16S rRNA genes, have provided a clear view of the main taxonomic groups of Bacteria in the distal gut and we are now moving towards defining the functions that reside in the distal gut microbiome. This review will explore recent advances in the area of the distal gut and the use of a variety of omic approaches to determine what constitutes this fascinating collection of microbes.  相似文献   

10.
Recombinant protein expression in Pichia pastoris   总被引:96,自引:0,他引:96  
The methylotrophic yeast Pichia pastoris is now one of the standard tools used in molecular biology for the generation of recombinant protein. P. pastoris has demonstrated its most powerful success as a large-scale (fermentation) recombinant protein production tool. What began more than 20 years ago as a program to convert abundant methanol to a protein source for animal feed has been developed into what is today two important biological tools: a model eukaryote used in cell biology research and a recombinant protein production system. To date well over 200 heterologous proteins have been expressed in P. pastoris. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of these tools coupled with a better understanding of the biology of Pichia species have led to this microbe's value and power in commercial and research labs alike.  相似文献   

11.
Mechanisms of cancer cell invasion   总被引:19,自引:0,他引:19  
The movement of cancer cells into tissue surrounding the tumour and the vasculature is the first step in the spread of metastatic cancers. Recent advances in imaging, the use of 3D model systems and the application of microarray technologies have yielded new insights into these processes. This work has challenged our views about what causes cancer cells to become motile in the first place, and has demonstrated that cancer cells can move in many different ways.  相似文献   

12.
The dawn of a new Proteomics era, just over a decade ago, allowed for large-scale protein profiling studies that have been applied in the identification of distinctive molecular cell signatures. Proteomics provides a powerful approach for identifying and studying these multiple molecular markers in a vast array of biological systems, whether focusing on basic biological research, diagnosis, therapeutics, or systems biology. This is a continuously expanding field that relies on the combination of different methodologies and current advances, both technological and analytical, which have led to an explosion of protein signatures and biomarker candidates. But how are these biological markers obtained? And, most importantly, what can we learn from them? Herein, we briefly overview the currently available approaches for obtaining relevant information at the proteome level, while noting the current and future roles of both traditional and modern proteomics. Moreover, we provide some considerations on how the development of powerful and robust bioinformatics tools will greatly benefit high-throughput proteomics. Such strategies are of the utmost importance in the rapidly emerging field of immunoproteomics, which may play a key role in the identification of antigens with diagnostic and/or therapeutic potential and in the development of new vaccines. Finally, we consider the present limitations in the discovery of new signatures and biomarkers and speculate on how such hurdles may be overcome, while also offering a prospect for the next few years in what could be one of the most significant strategies in translational medicine research.  相似文献   

13.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   

14.
The past 60 years have seen a revolution in our understanding of the molecular genetics of insecticide resistance. While at first the field was split by arguments about the relative importance of mono- vs. polygenic resistance and field- vs. laboratory-based selection, the application of molecular cloning to insecticide targets and to the metabolic enzymes that degrade insecticides before they reach those targets has brought out an exponential growth in our understanding of the mutations involved. Molecular analysis has confirmed the relative importance of single major genes in target-site resistance and has also revealed some interesting surprises about the multi-gene families, such as cytochrome P450s, involved in metabolic resistance. Identification of the mutations involved in resistance has also led to parallel advances in our understanding of the enzymes and receptors involved, often with implications for the role of these receptors in humans. This Review seeks to provide an historical perspective on the impact of molecular biology on our understanding of resistance and to begin to look forward to the likely impact of rapid advances in both sequencing and genome-wide association analysis.  相似文献   

15.
Recent advances in DNA sequencing techniques and automated informatics has led to clarification of all genome sequence of some model organisms in a very short period. The demonstration of the first draft sequence of the human genome has prompted us to elaborate new approaches in biology, pharmacology and medicine. Such new research will focus on high throughput methods to function on collections of genes, and hopefully, on a genome-wide, quantitative modeling of the cell system as a whole. In this review article, we discuss the present status of "post genome sequencing" approaches in line with our strategies for understanding the molecular mechanism of fertilization and activation of development using the African clawed frog, Xenopus laevis, as a model system.  相似文献   

16.
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus(KSHV; also known as human herpesvirus 8(HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.  相似文献   

17.
Learning disability (LD) is a very common, lifelong and disabling condition, affecting about 3% of the population. Despite this, it is only over the past 10-15 years that major progress has been made towards understanding the origins of LD. In particular, genetics driven advances in technology have led to the unequivocal demonstration of the importance of genome imbalance in the aetiology of idiopathic LD (ILD). In this review we provide an overview of these advances, discussing technologies such as multi-telomere FISH and array CGH that have already emerged as well as new approaches that show diagnostic potential for the future. The advances to date have highlighted new considerations such as copy number polymorphisms (CNPs) that can complicate the interpretation of genome imbalance and its relevance to ILD. More importantly though, they have provided a remarkable approximately 15-20% improvement in diagnostic capability as well as facilitating genotype/phenotype correlations and providing new avenues for the identification and understanding of genes involved in neurocognitive function.  相似文献   

18.
19.
More than 25 years have passed since publication of the first comprehensive multi-authored landmark volume on the population biology and evolution of clonal organisms (Jackson et al. 1985). Since then, no less than eight symposium volumes or special issues have appeared in scientific journals reporting on advances in the field of clonal plant research, indicating that the study of clonal organisms has remained an important topic in ecological research. The three most recent overviews were published in special issues of this journal (Stuefer et al. 2000; Tolvanen et al. 2004; Sammul et al. 2008), and these are now supplemented with a fourth special issue of Evolutionary Ecology. The articles published here reflect some of the most important contributions to a workshop on clonal plant biology held in Leuven (Belgium) in July 2009 and they illustrate some major advances that have been made over the last few years. In the following paragraphs, we first summarize some representative contributions to the current issue, and second, we put forward some personal ideas about promising and underexplored research lines in clonal plant research.  相似文献   

20.
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号