首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The breast cancer specific tumor suppressor protein 1, BRCA1, mediates functions for all cells to grow. The puzzle of BRCA1 is that its loss is only associated with tumors in breast and ovarian epithelial cells. In this focused review, we highlight the data linking BRCA1 to the centrosome function, and we suggest that the specificity for breast tumors is due to a loss in restraint on centrosome function. Amplification of centrosome numbers secondary to loss of BRCA1 can drive the cell into the aneuploid state, thus, by this perspective loss of BRCA1 is a mutator phenotype.  相似文献   

2.
A gene (BRCA1) predisposing for familial breast and ovarian cancer has been mapped to chromosome band 17q12-21. Based on the observation that ovarian tumors from families with breast and ovarian cancer lose the wild-type allele in the region for the BRCA1 locus, it has been suggested that the gene functions as a tumor suppressor gene. We have studied chromosomal deletions in the BRCA1 region in seven breast tumors, three ovarian tumors, one bladder cancer, and one colon cancer from patients in six families with breast-ovarian cancer, in order to test the hypothesis of the tumor suppressor mechanism at this locus. We have found a low frequency of loss of heterozygosity at this region, and our results do not support the idea that BRCA1 is a tumor suppressor gene. Alternatively, the disease segregating in these families is linked to one or more different loci.  相似文献   

3.
《Epigenetics》2013,8(11):1225-1229
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

4.
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

5.
We searched for criteria that could indicate breast cancer families with a high prior probability of being caused by the breast/ovarian cancer susceptibility locus BRCA1 on chromosome 17. To this end, we performed a linkage study with 59 consecutively collected Dutch breast cancer families, including 16 with at least one case of ovarian cancer. We used an intake cut-off of at least three first-degree relatives with breast and/or ovarian cancer at any age. Significant evidence for linkage was found only among the 13 breast cancer families with a mean age at diagnosis of less than 45 years. An unexpectedly low proportion of the breast-ovarian cancer families were estimated to be linked to BRCA1, which could be due to a founder effect in the Dutch population. Given the expected logistical problems in clinical management now that BRCA1 has been identified, we propose an interim period in which only families with a strong positive family history for early onset breast and/or ovarian cancer will be offered BRCA1 mutation testing. More recent work has indicated that RUL09 is probably due to BRCA2 (multipoint lod score of 1.17), while in families RUL47 and RUL49 a frameshift mutation in BRCA1 has been evidenced. Each of these two latter families contain an early-onset sporadic breast cancer patient, explaining their negative lod scores with 17q-markers.  相似文献   

6.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

7.
Dominant predisposition to early-onset breast cancer and/or ovarian cancer in many families is known to be the result of germ-line mutations in a gene on chromosome 17q, known as BRCA1. In this paper we use data from families with evidence of linkage to BRCA1 to estimate the age-specific risks of breast and ovarian cancer in BRCA1-mutation carriers and to examine the variation in risk between and within families. Under the assumption of no heterogeneity of risk between families, BRCA1 is estimated to confer a breast cancer risk of 54% by age 60 years (95% confidence interval [CI] 27%-71%) and an ovarian cancer risk of 30% by age 60 years (95% CI 8%-47%). Similar lifetime-risk estimates are obtained by examining the risks of contralateral breast cancer and of ovarian cancer, in breast cancer cases in linked families. However, there is significant evidence of heterogeneity of risk between families; a much better fit to the data is obtained by assuming two BRCA1 alleles, one conferring a breast cancer risk of 62% and an ovarian cancer risk of 11% by age 60 years, the other conferring a breast cancer risk of 39% and an ovarian cancer risk of 42%, with the first allele representing 71% of all mutations (95% CI 55%-87%). There is no evidence of clustering of breast and ovarian cancer cases within families.  相似文献   

8.
Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population.   总被引:12,自引:6,他引:6  
A population-based series of 54 male breast cancer cases from Southern California were analyzed for germ-line mutations in the inherited breast/ovarian cancer genes, BRCA1 and BRCA2. Nine (17%) of the patients had a family history of breast and/or ovarian cancer in at least one first-degree relative. A further seven (13%) of the patients reported breast/ovarian cancer in at least one second-degree relative and in no first-degree relatives. No germ-line BRCA1 mutations were found. Two male breast cancer patients (4% of the total) were found to carry novel truncating mutations in the BRCA2 gene. Only one of the two male breast cancer patients carrying a BRCA2 mutation had a family history of cancer, with one case of ovarian cancer in a first-degree relative. The remaining eight cases (89%) of male breast cancer with a family history of breast/ovarian cancer in first-degree relatives remain unaccounted for by mutations in either the BRCA1 gene or the BRCA2 gene.  相似文献   

9.
Germline mutations in BRCA1 result in a significant predisposition for breast and ovarian cancer, with frequent LOH of the remaining wild type allele. Soon after the identification of BRCA1, several different knockout mice were generated to study its biological function in vivo. BRCA1, which is involved in DNA double-strand break (DSB) repair, appeared to be essential for embryonic proliferation and survival during mid-gestation. In contrast to human mutation carriers however, heterozygous mouse mutants did not show spontaneous cancer development. Therefore, a number of conditional mouse models were developed. While tumors of these mice show varying degrees of similarity with their human counterparts, two mouse models develop mammary tumors that lack expression of estrogen and progesterone receptors and ERBB2. This ‘triple negative’ signature is a characteristic feature of BRCA1-associated breast cancers, which can therefore not be treated with endocrine agents or ERBB2-targeting therapeutics. Promising drugs for treating BRCA1-mutated tumors include platinum compounds and PARP inhibitors, which are specifically toxic to DSB repair deficient cells. Although encouraging results have been reported, recent findings indicate that BRCA1/2 deficient ovarian tumors can escape from such targeted treatment by genetic reversion. This resistance mechanism might be studied in future mouse tumor models based on Brca1 truncating mutations mimicking defined human founder mutations.  相似文献   

10.
The majority of multiple-case families that segregate both breast and ovarian cancer in a dominant fashion are due to mutations in the BRCA1 gene on chromosome 17q. In this paper, we have combined penetrance estimates for BRCA1 with the results of two population-based genetic epidemiological studies to estimate the gene frequency of BRCA1. On the assumption that the excess risk of ovarian cancer in first degree relatives of breast cancer patients and the breast cancer excess in relatives of ovarian cancer patients are both entirely accounted for by BRCA1, we estimate that the BRCA1 gene frequency is 0.0006 (95% confidence interval [O.002-0.002]) and that the proportion of breast cancer cases in the general population due to BRCA1 is 5.3% below age 40 years, 2.2% between ages 40 and 49 years, and 1.1% between ages 50 and 70 years. The corresponding estimates for ovarian cancer are 5.7%, 4.6%, and 2.1%, respectively. Our results suggest that the majority of breast cancer families with less than four cases and no ovarian cancer are not due to rare highly penetrant genes such as BRCA1 but are more likely to be due either to chance or to more common genes of lower penetrance.  相似文献   

11.
BACKGROUND: Germline mutations in BRCA1/2 greatly elevate risks of breast and ovarian cancers, but the role of these genes in tumourigenesis of other cancer types is still being investigated. OBJECTIVE: We report on an investigation of BRCA1/2 mutations and their loss of heterozygosity (LOH) in a patient with a strong family history of breast cancer who was diagnosed with consecutive primary cervical, ovarian and lung carcinomas. METHODS AND RESULTS: BRCA1/2 mutation screening of the proband revealed a common familial breast- and ovarian cancer-associated germline BRCA2 mutation (3034del4bp). We then performed LOH analysis for BRCA2 in lung adenocarcinoma tissue of the patient. Using the laser-capture microdissection (LCM) technique, we obtained pure populations of neoplastic cells from which DNA could be extracted. Mutation analysis by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing revealed loss of the mutant allele in the adenocarcinoma tumour tissue. CONCLUSION: To our knowledge, this is the first report of investigation for LOH for BRCA2 in primary lung adenocarcinoma tissue of a patient with multiple primary tumours related to a familial germline BRCA2 mutation. Interestingly, it was the mutant, not the wild-type, allele which was lost in the lung adenocarcinoma tissue.  相似文献   

12.
BRCA1 is a tumor suppressor gene which is inactivated by mutation in familial breast and ovarian cancers. Over 300 different disease causing germ-line mutations have been described; 60% are unique to an individual family. This diversity and the large size of the gene lead us to search for a prescreening method for BRCA1 mutations. Since BRCA1 is a nuclear protein in normal cells, but reported by some authors to be cytoplasmic in breast tumor cells of patients with BRCA1 mutation, we evaluated immunohistochemistry as a prescreening technique to identify BRCA1 mutations in patients with familial presentation of breast cancer. Using a monoclonal antibody against the carboxy-terminal region of BRCA1, we performed immunohistochemistry on 18 tumor samples from patients with hereditary breast cancer. Cytoplasmic staining of BRCA1 was observed in 10 cases. Of the 18 tumors, 12 (66%) showed either BRCA mutation or BRCA1 accumulation or both, indicating that BRCA1 function might be lost in breast tumor cells not only through mutation, but also via abnormal cytoplasmic location. The immunohistochemical test used in this study would not be efficient as a pre-screening method of deleterious mutations, but it appeared useful to investigate tumor physiology.  相似文献   

13.
BRCA1 and BRCA2 mutation carriers are predisposed to develop breast and ovarian cancers, but the reasons for this tissue specificity are unknown. Breast epithelial cells are known to contain elevated levels of oxidative DNA damage, triggered by hormonally driven growth and its effect on cell metabolism. BRCA1- or BRCA2-deficient cells were found to be more sensitive to oxidative stress, modeled by treatment with patho-physiologic concentrations of hydrogen peroxide. Hydrogen peroxide exposure leads to oxidative DNA damage induced DNA double strand breaks (DSB) in BRCA-deficient cells causing them to accumulate in S-phase. In addition, after hydrogen peroxide treatment, BRCA deficient cells showed impaired Rad51 foci which are dependent on an intact BRCA1–BRCA2 pathway. These DSB resulted in an increase in chromatid-type aberrations, which are characteristic for BRCA1 and BRCA2-deficient cells. The most common result of oxidative DNA damage induced processing of S-phase DSB is an interstitial chromatid deletion, but insertions and exchanges were also seen in BRCA deficient cells. Thus, BRCA1 and BRCA2 are essential for the repair of oxidative DNA damage repair intermediates that persist into S-phase and produce DSB. The implication is that oxidative stress plays a role in the etiology of hereditary breast cancer.  相似文献   

14.
Structural determinants of BRCA1 translational regulation   总被引:4,自引:0,他引:4  
  相似文献   

15.
A population-based series of 649 unselected incident cases of ovarian cancer diagnosed in Ontario, Canada, during 1995-96 was screened for germline mutations in BRCA1 and BRCA2. We specifically tested for 11 of the most commonly reported mutations in the two genes. Then, cases were assessed with the protein-truncation test (PTT) for exon 11 of BRCA1, with denaturing gradient gel electrophoresis for the remainder of BRCA1, and with PTT for exons 10 and 11 of BRCA2. No mutations were found in all 134 women with tumors of borderline histology. Among the 515 women with invasive cancers, we identified 60 mutations, 39 in BRCA1 and 21 in BRCA2. The total mutation frequency among women with invasive cancers, 11.7% (95% confidence interval [95%CI] 9.2%-14.8%), is higher than previous estimates. Hereditary ovarian cancers diagnosed at age <50 years were mostly (83%) due to BRCA1, whereas the majority (60%) of those diagnosed at age >60 years were due to BRCA2. Mutations were found in 19% of women reporting first-degree relatives with breast or ovarian cancer and in 6.5% of women with no affected first-degree relatives. Risks of ovarian, breast, and stomach cancers and leukemias/lymphomas were increased nine-, five-, six- and threefold, respectively, among first-degree relatives of cases carrying BRCA1 mutations, compared with relatives of noncarriers, and risk of colorectal cancer was increased threefold for relatives of cases carrying BRCA2 mutations. For carriers of BRCA1 mutations, the estimated penetrance by age 80 years was 36% for ovarian cancer and 68% for breast cancer. In breast-cancer risk for first-degree relatives, there was a strong trend according to mutation location along the coding sequence of BRCA1, with little evidence of increased risk for mutations in the 5' fifth, but 8.8-fold increased risk for mutations in the 3' fifth (95%CI 3.6-22.0), corresponding to a carrier penetrance of essentially 100%. Ovarian, colorectal, stomach, pancreatic, and prostate cancer occurred among first-degree relatives of carriers of BRCA2 mutations only when mutations were in the ovarian cancer-cluster region (OCCR) of exon 11, whereas an excess of breast cancer was seen when mutations were outside the OCCR. For cancers of all sites combined, the estimated penetrance of BRCA2 mutations was greater for males than for females, 53% versus 38%. Past studies may have underestimated the contribution of BRCA2 to ovarian cancer, because mutations in this gene cause predominantly late-onset cancer, and previous work has focused more on early-onset disease. If confirmed in future studies, the trend in breast-cancer penetrance, according to mutation location along the BRCA1 coding sequence, may have significant impact on treatment decisions for carriers of BRCA1-mutations. As well, BRCA2 mutations may prove to be a greater cause of cancer in male carriers than previously has been thought.  相似文献   

16.
The breast-ovary cancer–family syndrome is a dominant predisposition to cancer of the breast and ovaries which has been mapped to chromosome region 17ql2-q21. The majority, but not all, of breast-ovary cancer families show linkage to this susceptibility locus, designated BRCA1. We report here the results of a linkage analysis of 145 families with both breast and ovarian cancer. These families contain either a total of three or more cases of early-onset (before age 60 years) breast cancer or ovarian cancer. All families contained at least one case of ovarian cancer. Overall, an estimated 76% of the 145 families are linked to the BRCA1 locus. None of 13 families with cases of male breast cancer appear to be linked, but it is estimated that 92% (95% confidence interval 76%–100%) of families with no male breast cancer and with two or more ovarian cancers are linked to BRCA1. These data suggest that the breast-ovarian cancer–family syndrome is genetically heterogeneous. However, the large majority of families with early-onset breast cancer and with two or more cases of ovarian cancer are likely to be due to BRCA1 mutations.  相似文献   

17.
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.  相似文献   

18.
Karve TM  Preet A  Sneed R  Salamanca C  Li X  Xu J  Kumar D  Rosen EM  Saha T 《PloS one》2012,7(6):e37697
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.  相似文献   

19.
The majority of familial breast and ovarian cancers arise from mutations in the BRCA1 and BRCA2 genes. Amplification at the 11q13.5 locus is commonly observed in breast and ovarian cancers. In 2003, Hughes-Davies et al. identified a novel gene (EMSY) at this locus which binds BRCA2 within a region deleted in some cancers. Although little is known about the cellular role of EMSY, indirect evidence suggests that this nuclear protein is capable of silencing the activation potential of BRCA2. In this study we aimed to investigate expression of the EMSY gene and its protein product in sporadic ovarian cancer. Real-time quantitative RT-PCR was performed in 50 ovarian cancer and 17 normal ovarian tissue samples. Overexpression of the EMSY gene was found in 6/50 cases (12%), but in none of the control samples. To determine the EMSY protein by Western blotting, semi-quantitative analysis of the EMSY protein was performed using the Scion Image Gel Analysis Program. Statistical analysis was performed using SPSS 11.5. All patients having EMSY overexpression also displayed increased levels of the EMSY protein. Sporadic ovarian cancer shows overexpression of EMSY at a prevalence similar to that found in breast cancer and the overexpression is correlated with the protein level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号