首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Rat alpha2 acute-phase macroglobulin was isolated from turpentine-injected rats by Sephadex G-200 chromatography and ion-exchange chromatography on DEAE-cellulose. This method, since it does not include (NH4)2SO4 treatment, allows the study of the physicochemical as well as the biological properties of the molecule. 2. The purity of the preparation was demonstrated by ultracentrifugation, polyacrylamide-gel electrophoresis, fused "rocket" immunoelectrophoresis as well as double immunodiffusion. 3. The rat alpha2 acute-phase macroglobulin was characterized in terms of its main physical and chemical properties. Its isoelctric point was determined by isoelectrofocusing to be 4.55; s020,w was 18.4S and E1%/1cm at 278 nm was 6.8. The mol.wt. was determined by light-scattering to be 770000. 4. The amino acid content was compared with that of rat alpha1 macroglobulin and was found very similar. The carbohydrate composition of alpha2 acute-phase macroglobulin was determined to be: hexose, 4.25%; glucosamine, 3.4%; sialic acid, 2%; fucose, 0.2%. From these results it was concluded that alpha2 acute-phase macroglobulin, although a typical acute-phase reactant, possesses the characteristic physicochemical properties of alpha macroglobulins.  相似文献   

2.
Crystals of methylamine-treated alpha 2-macroglobulin (alpha 2M-MA), alpha 2-macroglobulin in complex with two molecules of trypsin, alpha 2M-T2, one molecule of plasmin, alpha 2M-PL, and one molecule of plasmin followed by methylamine-treatment, alpha 2M-PL(MA), have reproducibly been obtained using ammonium sulfate or magnesium sulfate as precipitants. The crystals are fragile tetragonal bipyramids of up to 1.5 mm in length. Crystals of alpha 2M-MA diffracted to at least 9 A resolution, crystals of alpha 2M-T2 diffracted to 10 A resolution and crystals of alpha 2M-PL and alpha 2M-PL(MA) diffracted to 11 A resolution. For alpha 2M-MA the cell parameters were determined as: a=b=257 A, c=555 A; and for alpha 2M-T2 as: a=b=247 A, c=559 A. For both preparations the space group was I4(1)22. As estimated from density measurements, the crystals of alpha 2M-MA and alpha 2M-T2 contain one 360 kDa alpha 2M dimer per asymmetric unit. The volume of the asymmetric unit/molecular weight, Vm, was estimated at 5.6 A3/Da. The crystal parameters of alpha 2M-PL and alpha 2M-PL(MA) were not determined.  相似文献   

3.
S L Gonias  S V Pizzo 《Biochemistry》1983,22(21):4933-4940
Human alpha 2-macroglobulin (alpha 2M) half-molecules were prepared by limited reduction and alkylation of the native protein. Reaction with plasmin resulted in nearly quantitative cleavage of the half-molecule Mr approximately 180000 subunits into Mr approximately 90000 fragments. Subunit cleavage was significantly less complete when plasmin was reacted with alpha 2M whole molecules. The plasmin and trypsin binding capacities of the two forms of alpha 2M were compared by using radioiodinated proteases. alpha 2M half-molecules bound an equivalent number of moles of plasmin or trypsin. Native unreduced alpha 2M bound only half as much plasmin as trypsin. These data are consistent with the hypothesis that the two protease binding sites are adjacent in native alpha 2M. alpha 2M half-molecule-plasmin complexes reassociated less readily than half-molecule-trypsin complexes, supporting this interpretation. The frequency of covalent bond formation between plasmin and alpha 2M was considerably higher than that previously observed with other proteases. Approximately 80-90% of the plasmin that reacted with alpha 2M whole molecules or half-molecules became covalently bound. The reactivities of purified alpha 2M-plasmin complexes were compared with small and large substrates. Equivalent kcat/Km values were determined at 22 degrees C for the hydrolysis of H-D-Val-Leu-Lys-p-nitroanilide dihydrochloride by whole molecule-plasmin complex and half-molecule-plasmin complex (40 mM-1 s-1 and 39 mM-1 s-1, respectively, compared with 66 mM-1 s-1 determined for free plasmin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hyperimmune sera against human alpha 2 macroglobulin were raised in rabbits following immunization with 's' alpha 2-macroglobulin over half a year. Immunoglobulins were prepared by DEAE-Sephacel anion exchange chromatography. The immunoglobulin preparations showed a remarkably high and equal titer for 's' and 'f' alpha 2-macroglobulin (plasma alpha 2-macroglobulin fully saturated with pig pancreas trypsin), which amounted to 6.4 X 10(-6) as revealed by passive hemagglutination. Immunoimmobilization experiments revealed that at equilibrium, 's' alpha 2-macroglobulin and both 'f' alpha 2-macroglobulins (27 and 82% saturation of 's' alpha 2-macroglobulin with trypsin) had been bound to the same degree from the fluid phase to the monospecific antibodies that had been adsorbed to polystyrene tubes. Comparison of quantitative gel scans for disappearance of the intact alpha 2-macroglobulin subunit (Mr 182000) with 125I-labeled trypsin binding capacity of immunoimmobilized alpha 2-macroglobulin-trypsin complexes showed conspicuous agreement. Rocket immunoelectrophoresis did not give significant differences between 's' alpha 2-macroglobulin and 'f' alpha 2-macroglobulin. In the fluid phase, a binding ratio of 2.4 mol trypsin/mol alpha 2-macroglobulin was observed. Saturation of solid phase immunoimmobilized 's' alpha 2-macroglobulin with trypsin could be accomplished by incubation with a 100-200-fold molar excess of enzyme for 10 min. The solid-phase experiments showed a binding ratio of 2.0 mol trypsin/mol alpha 2-macroglobulin. The high molar excess of trypsin needed to saturate solid-phase immunoimmobilized alpha 2-macroglobulin, which binds 20% less trypsin than in the liquid phase, is partially explained by an enhancement of the negative cooperativity of trypsin binding to alpha 2-macroglobulin found in the liquid-phase system. Assessment of the trypsin-binding capacity of alpha 2-macroglobulin immunoadsorbed from synovial fluids (n = 19) of patients with seropositive rheumatoid arthritis yielded an inactive alpha 2-macroglobulin of 0-53% when compared to the trypsin-binding capacity of normal plasma alpha 2-macroglobulin.  相似文献   

5.
Two new human cell lines, RCM-1 and CoCM-1, have been established from primary colorectal adenocarcinomas. Both cell lines were unique in that the cultures secreted trypsin inhibitors in vitro. The activities of these inhibitors were accumulated in serum-free media of both cell lines over a period of several days. Two inhibitors (PI-1 and PI-2) were isolated from serum-free conditioned medium in which RCM-1 was grown by anion-exchange and gel filtration high-performance liquid chromatography. PI-1 inhibited trypsin and chymotrypsin strongly, and pancreatic elastase weakly. Its molecular weight was about 57 kilodaltons (Kd) as determined by gel filtration chromatography. It cross-reacted with the antiserum elicited against human alpha 1-antitrypsin in double immunodiffusion. PI-1 corresponding to alpha 1-antitrypsin was also demonstrated immunohistochemically in both cell lines. PI-2 inhibited trypsin strongly, and chymotrypsin, kallikrein and plasmin weakly. It had higher molecular weight (200-300 Kd) than that of PI-1, and did not cross-react with antisera against human alpha 1-antitrypsin, alpha 2-macroglobulin, alpha 1-antichymotrypsin, alpha 2-plasmin inhibitor, inter-alpha-trypsin inhibitor and urinary trypsin inhibitor. RCM-1 and CoCM-1 are the first colorectal adenocarcinoma cell lines that secrete functionally active trypsin inhibitors, including alpha 1-antitrypsin in vitro, and are useful for the study of tumor-cell derived proteinase inhibitors.  相似文献   

6.
Porcine plasmin (EC 3.4.21.7) is obtained from plasminogen activated by human urokinase. This enzyme can bind, in an equimolecular ratio, to an alpha2-macroglobulin isolated from porcine serum. The number of active sites of plasmin has been determined through a burst titration of nitroaniline during the presteady-state hydrolysis of an amide substrate (N-alpha-carbobenzoxy-L-arginine-p-nitroanilide). The kinetic constants relative to a very sensitive ester substrate (N-alpha-carbobenzoxy-L-lysine nitrophenylester) hydrolysis have been measured. The binding of plasmin to alpha2-macroglobulin results in a complete inhibition of proteolytic activity, a reduction of active sites number and a decrease of esterolytic activity towards this substrate. In the complex, the residual activity (about 60%) is protected from protein inhibitors. Absorbance difference spectra show that 1 mol of alpha2-macroglobulin binds 1 mol of plasmin and 2 mol of trypsin. When plasmin is first bound to alpha2-macroglobulin, only 1 mol of trypsin can gain access tothe second site without removing the plasmin, showing that a steric hindrance is implicated in the inhibition performed by alpha2-macroglobulin binding.  相似文献   

7.
The primary inhibitor of plasmin in human plasma.   总被引:9,自引:0,他引:9       下载免费PDF全文
A complex between plasmin and an inhibitor was isolated by affinity chromatography from urokinase-activated human plasma. The complex did not react with antibodies against any of the known proteinase inhibitors in plasma. A rabbit antiserum against the complex was produced. It contained antibodies agianst plasminogen+plasmin and an alpha2 protein. By crossed immunoelectrophoresis the alpha2 protein was shown to form a complex with plasmin, when generated by urokinase in plasma, and with purified plasmin. The alpha2 protein was eluted by Sephadex G-200 gel filtration with KD approx. 0.35, different from the other inhibitors of plasmin in plasma, and corresponding to an apparent relative molecular mass (Mr) of about 75000. By sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Mr of the complex was found to be approx. 130000. After reduction of the complex two main bands of protein were observed, with Mr, about 72000 and 66000, probably representing an acyl-enzyme complex of plasmin-light chain and inhibitor-heavy chain, and a plasmin-heavy chain. A weak band with Mr 9000 was possibly an inhibitor-light chain. The inhibitor was partially purified and used to titrate purified plasmin of known active-site concentration. The inhibitor bound plasmin rapidly and strongly. Assuming an equimolar combining ratio, the concentration of active inhibitor in normal human plasma was estimated to be 1.1 mumol/1. A fraction about 0.3 of the antigenic inhibitor protein appeared to be functionally inactive. In plasma, plasmin is primarily bound to the inhibitor. Only after its saturation does lysis of fibrinogen and fibrin occur and a complex between plasmin and alpha2 macroglobulin appear.  相似文献   

8.
Rat alpha 1-macroglobulin was isolated from plasma. Gel electrophoresis of the denatured and reduced protein showed two bands, with Mr values of 163 000 and 37 000. The large subunit contained an autolytic site. This subunit was also split after reaction of the macroglobulin with trypsin. Electron microscopy showed that the macroglobulin changed towards a more compact conformation after reaction with this proteinase. Subtilisin, or alpha 1-macroglobulin, was labelled with a sucrose-containing radio-iodinated group that stays in lysosomes after endocytosis and breakdown of the tagged protein. After intravenous injection into rats, alpha 1-macroglobulin was cleared from plasma with first-order kinetics, showing a half-life of about 9 h, whereas complexes of alpha 1-macroglobulin and subtilisin were cleared with half-lives of only 3 min. Liver contained about 60% of the label at 30 min after injection of complexes. About 90% of the liver radioactivity was found in parenchymal cells isolated after perfusion of the liver with a collagenase solution. Subcellular fractionation indicated a lysosomal localization of the complexes. We conclude that endocytosis by parenchymal liver cells is the major cause of the rapid clearance of alpha 1-macroglobulin-proteinase complexes from plasma.  相似文献   

9.
1. Complex formation of trypsin with alpha2 macroglobulin results in marked changes of the Michaelis-Menten constant, pH optimum and sensitivity to ionic strength in a system using N-carbobenzoxy-glycylglycyl-L-arginine-2-naphthylamide as substrate. 2. In contrasts to the inhibition (50%) observed when alpha2 macroglobulin-bound trypsin is assayed under conditions optimal for the free enzyme, there is minimal reduction of activity when determinations are performed at a substrate concentration and pH optimal for the bound enzyme. 3. The changes in substrate concentration and ionic environment required for maximum activity of alpha2 macroglobulin-bound trypsin are similar to those observed with enzymes embedded in polyelectrolyte matrices and may reflect alterations in the microenvironment of the enzyme resulting from conformational changes of the macromolecule during interaction with trypsin. 4. Enzymatic activity of trypsin towards casein is greatly reduced by alpha2 macroglobulin, even under assay conditions optimal for the bound enzyme, confirming previous findings that access to the active center for high-molecular weight substrates is sterically hindered by alpha2 macroglobulin.  相似文献   

10.
W E Holmes  H R Lijnen  D Collen 《Biochemistry》1987,26(16):5133-5140
Human alpha 2-antiplasmin (alpha 2AP) has been expressed in Chinese hamster ovary cells and purified from conditioned media. The recombinant protein (r alpha 2AP) is immunologically identical with natural alpha 2AP and indistinguishable with respect to plasmin(ogen) binding properties. Second-order rate constants (k1) for the interaction of alpha 2AP and r alpha 2AP with plasmin are both (1-2) X 10(7) M-1 s-1. In order to examine the effects of alterations within the reactive site of alpha 2AP, deletions of the P1 residue Arg-364 (r alpha 2AP-delta Arg364) or the P'1 residue Met-365 (r alpha 2AP-delta Met365) were introduced by in vitro site-directed mutagenesis. r alpha 2AP-delta Met365 completely retains its ability to inhibit both plasmin and trypsin, indicating that alpha 2AP has no absolute requirement for Met in the P'1 position. Unexpectedly, no increase in antithrombin activity was observed. r alpha 2AP-delta Arg364 has lost the ability to inhibit plasmin, trypsin, and thrombin, but unlike the wild-type protein, this variant is an effective elastase inhibitor (k1 = 1.5 X 10(5) M-1 s-1).  相似文献   

11.
Inhibitory effect on the G1-S transition of hepatocytes in vivo was measured in the ultrafiltrates of alpha 2 M/trypsin and alpha 2 M/thrombin complexes (alpha 2 macroglobulin: alpha 2 M). Untreated human alpha 2 M activity corresponds to one inhibitory unit/mg. When alpha 2 M/trypsin and alpha 2 M/thrombin complexes were ultrafiltrated at pH 7.8 on PM 10 Amicon membrane, 300 inhibitory units were obtained from 1 mg of alpha 2 M. After treatment at pH 10 of the same complexes, 30,000 inhibitory units were obtained from the same quantity of alpha 2 M. Such a high activity was observed when native alpha 2 M was used before alpha 2 M/enzyme interaction. When alpha 2 M was previously treated by an aliphatic amine or reduced and alkylated, the activity found in ultrafiltrates was very low. In the same way, a low activity was observed when the captation capacity of alpha 2 M was exceeded. These results show that specific cleavages on alpha 2 M molecule are needed to obtain a large amount of active inhibitory peptide.  相似文献   

12.
Urokinase-activated human plasma was studied by gel electrophoresis, gel filtration, crossed immunoelectrophoresis and electroimmunoassay with specific antibodies and by assay of esterase and protease activity of isolated fractions. Urokinase induced the formation of different components with plasminogen+plasmin antigenicity. At low concentrations of urokinase, a component with a K(D) value of 0.18 by gel filtration and post beta(1) mobility by gel electrophoresis was detected. The isolated component had no enzyme or plasminogen activity. In this plasma sample fibrinogen was not degraded for 10h, but when fibrin was formed, by addition of thrombin, fibrin was quickly lysed, and simultaneously a component with a K(D) value of 0 and alpha(2) mobility appeared, which was probably plasmin in a complex with alpha(2) macroglobulin. This complex showed both esterase and protease activity. After gel filtration with lysine buffer of the clotted and lysed plasma another two components were observed with about the same K(D) value by gel filtration as plasminogen (0.35), but beta(1) and gamma mobilities by gel electrophoresis. They appeared to be modified plasminogen molecules, and possibly plasmin with gamma mobility. Similar processes occurred without fibrin at higher urokinase concentrations. Here a relatively slow degradation of fibrinogen was correlated to the appearance of the plasmin-alpha(2) macroglobulin complex. The fibrin surface appeared to catalyse the ultimate production of active plasmin with a subsequent preferential degradation of fibrin and the formation of a plasmin-alpha(2) macroglobulin complex. The gel filtration and electrophoresis of the plasma protease inhibitors, alpha(1) antitrypsin, inter-alpha-inhibitor, antithrombin III, and C(1)-esterase inhibitor indicated that any complex between plasmin and these inhibitors was completely dissociated. The beta(1) and post beta(1) components appear to lack correlates among components occurring in purified preparations of plasminogen and plasmin.  相似文献   

13.
Pure alpha2M is prepared with fresh plasma as starting material, to prevent the interaction of alpha2M from proteolytic enzymes of plasma such as thrombin, plasmin and kallikrein. During the purification steps, polybrene and aprotin are used as inhibitors and plasminogen is absorbed onto bentonite. When alpha 2M is submitted to polyacrylamide gel electrophoresis (PAA) containing 0.1% SDS, a complete dissociation in two half-molecules of MW 380,000 occurs. When alpha2M is incubated in 1% SDS and 1% beta-mercaptoethanol as reducing agent, only one component of MW 190,000 is observed in PAA-SDS. This experiments show that the alpha2M molecule consist of two symetric halves of same MW (380,000) linked by non covalent bonds. Each two-half-molecules is made of two polypeptides chains MW 190,000 linked by disulfide bonds. Thus alpha2M molecule contains four polypeptides chains having a same MW. The same techniques were applied to the study of alaph2M proteinases complexes. Three different proteinases (plasmin, trypsin and papain) were used in these experiments. Trypsin and papain are commercialy available. Plasminogen was obtained by affinity chromatography and activated into plasmin by insoluble streptokinase fixed on PAB cellulose.  相似文献   

14.
The binding of 125I-transforming growth factors-beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2) to alpha 2-macroglobulin (alpha 2M) was studied before and after reaction with plasmin, thrombin, trypsin, or methylamine. Complex formation between TGF-beta and native or reacted forms of alpha 2M was demonstrated by non-denaturing polyacrylamide gel electrophoresis and autoradiography. Reaction of native alpha 2M with plasmin or methylamine markedly increased the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2 to alpha 2M. The alpha 2M-plasmin/TGF-beta complexes were minimally dissociated by heparin. Reaction of alpha 2M with thrombin or trypsin reduced the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2; the resulting complexes were readily dissociated by heparin. Complexes between TGF-beta 2 and native or reacted forms of alpha 2M were less dissociable by heparin than the equivalent complexes with TGF-beta 1. These studies demonstrate that the TGF-beta-binding activity of alpha 2M is significantly affected by plasmin, thrombin, trypsin and methylamine. Observations that alpha 2M-plasmin preferentially binds TGFs-beta suggest a mechanism by which alpha 2M may regulate availability of TGFs-beta to target cells in vivo.  相似文献   

15.
Uptake of proteinase-alpha-macroglobulin complexes by macrophages.   总被引:4,自引:0,他引:4  
Complexes of labelled proteinases (subtilopeptidase A, trypsin) with serum alpha 1-macroglobulin or alpha 2-macroglobulin are rapidly taken up in vitro by rabbit alveolar macrophages and peritoneal macrophages but not by mixed rabbit peripheral blood leukocytes. Enzyme, not bound to alpha 1- or alpha 2-macroglobulin, does not become associated with alveolar macrophages. Chemically inactivated subtilopeptidase A does not bind to alpha 1- or alpha 2-macroglobulin; chemically inactivated subtilopeptidase A in mixtures with alpha 1 - or alpha 2-microglobulin, does not interact with alveolar macrophages. Blocking experiments confirmed that the interaction of proteinase with alveolar macrophages is complex specific; uptake of labelled complex was prevented by the simultaneous addition of macroglobulin complexes formed with non-labelled subtilopeptidase A, subtilopeptidase B, trypsin or chymotrypsin but not by macroglobulin alone. The findings demonstrate a complex-specific interaction between proteinase-alpha-macroglobulin complexes and macrophages.  相似文献   

16.
A plasminogen-binding site of human alpha 2-plasmin inhibitor was studied. The chromatogram of digest from the amidinated alpha 2-plasmin inhibitor (67K-daltons, plasminogen-binding form) with trypsin was almost identical with that obtained from the 65K-daltons derivative (non-plasminogen-binding form) treated with the same procedure, except for the three tryptic peptides. One of the three peptides, the deamidinated peptide T-11, was found to have a strong ability to inhibit the interaction of alpha 2-plasmin inhibitor with human plasmin. Moreover, the dissociation constant Kd for interaction between the peptide T-11 and plasmin was estimated to be 5.5 microM, indicating that Kd is about 10-fold lower than that of epsilon-aminocaproic acid. The sequence of the peptide T-11 was determined by the Edman method as follows: NH2-G-D-K-L-F-G-P-D-L-K-L-V-P-P-M-E-E-D-Y-P-Q-F-G-S-P-K-COOH. alpha 2-Plasmin inhibitor and its 65K-daltons derivative were found to have the same NH2-terminal sequence of Asn(Asp)-Gln-Glu-Gln-. These results indicated that the plasminogen-binding site(s) of alpha 2-plasmin inhibitor could be located in the COOH-terminal region of its molecule and that some of epsilon-NH2-groups in the deamidinated peptide T-11 may be involved in the lysine-binding site(s) of plasmin(ogen).  相似文献   

17.
We have compared the reactions of trypsin with human alpha 2-macroglobulin (alpha 2M), and three rat plasma protease inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2M. All four of these proteins appear to contain reactive thiol esters. The electrophoretic mobility in agarose gels of human and rat alpha 2M is increased by 1 mol of trypsin, while the mobility of alpha 1M and alpha 1I3 is decreased. Treatment with methylamine causes similar mobility changes, except in the case of rat alpha 2M. Titration of human and rat macroglobulins by repeated small additions of trypsin and by assay of liberated SH groups or enhanced ligand fluorescence revealed a stoichiometry of about 1 mol of trypsin/mol of inhibitor. In contrast, addition of macroglobulin to a fixed amount of trypsin and detection of residual amidase or protease activity revealed a stoichiometry of about 2 mol of trypsin for 1 mol of human alpha 2M, about 1.4 mol for rat alpha 1M, and about 1 mol for rat alpha 2M. One mol of trypsin reacted with 2 or more mol of alpha 1I3 by the criteria of SH groups liberated or protease inhibition. Methylamine-treated rat alpha 2M binds a significant amount of trypsin releasing about 2 mol of SH. Radioactive beta-trypsin was covalently bound to subunits of the purified plasma inhibitors. The Mr of the labeled products with rat and human alpha 2M had molecular weights which suggested trypsin was bound to intact as well as cleaved subunit chains and also to multiple chains via cross-linking. Rat alpha 1M also produced a product which may be an intact subunit alpha chain plus trypsin. Greater than 80% of the trypsin was bound covalently to these inhibitors at low molar ratios.  相似文献   

18.
1. alpha(2)-Macroglobulin is known to bind and inhibit a number of serine proteinases. We show that it binds thiol and carboxyl proteinases, and there is now reason to believe that alpha(2)-macroglobulin can bind essentially all proteinases. 2. Radiochemically labelled trypsin, chymotrypsin, cathepsin B1 and papain are bound by alpha(2)-macroglobulin in an approximately equimolar ratio. Equimolar binding was confirmed for trypsin by activesite titration. 3. Pretreatment of alpha(2)-macroglobulin with a saturating amount of one proteinase prevented the subsequent binding of another. We conclude that each molecule of alpha(2)-macroglobulin is able to react with one molecule of proteinase only. 4. alpha(2)-Macroglobulin did not react with exopeptidases, non-proteolytic hydrolases or inactive forms of endopeptidases. 5. The literature on binding and inhibition of proteinases by alpha(2)-macroglobulin is reviewed, and from consideration of this and our own work several general characteristics of the interaction can be discerned. 6. A model is proposed for the molecular mechanism of the interaction of alpha(2)-macroglobulin with proteinases. It is suggested that the enzyme cleaves a peptide bond in a sensitive region of the macroglobulin, and that this results in a conformational change in the alpha(2)-macroglobulin molecule that traps the enzyme irreversibly. Access of substrates to the active site of the enzyme becomes sterically hindered, causing inhibition that is most pronounced with large substrate molecules. 7. The possible physiological importance of the unique binding characteristics of alpha(2)-macroglobulin is discussed.  相似文献   

19.
1. A latent neutral proteinase was found in culture media of mouse bone explants. Its accumulation during the cultures is closely parallel to that of procollagenase; both require the presence of heparin in the media. 2. Latent neutral proteinase was activated by several treatments of the media known to activate procollagenase, such as limited proteolysis by trypsin, chymotrypsin, plasmin or kallikrein, dialysis against 3 M-NaSCN at 4 degrees C and prolonged preincubation at 25 degrees C. Its activation often followed that of the procollagenase present in the same media. 3. Activation of neutral proteinase (as does that of procollagenase) by trypsin or plasmin involved two successive steps: the activation of a latent endogenous activator present in the media followed by the activation of neutral proteinase itself by that activator. 4. The proteinase degrades cartilage proteoglycans, denatured collagen (Azocoll) and casein at neutral pH; it is inhibited by EDTA, cysteine or serum. Collagenase is not inhibited by casein or Azocoll and is less resistant to heat or to trypsin than is the proteinase. Partial separation of the two enzymes was achieved by gel filtration of the media but not by fractional (NH4)2SO4 precipitation, by ion exchange or by affinity chromatography on Sepharose-collagen. These fractionations did not activate latent enzymes. 5. Trypsin activation decreases the molecular weight of both latent enzymes (60 000-70 000) by 20 000-30 000, as determined by gel filtration of media after removal of heparin. 6. The latency of both enzymes could be due either to a zymogen or to an enzyme-inhibitor complex. A thermostable inhibitor of both enzymes was found in some media. However, combinations of either enzyme with that inhibitor were not reactivated by trypsin, indicating that this inhibitor is unlikely to be the cause of the latency.  相似文献   

20.
alpha-1-Inhibitor3 (alpha-I3), a new enzyme-binding protein, was isolated from rat plasma by a combination of ammonium sulfate precipitation, ion exchange chromatography on DEAE cellulose and gel filtration on ultrogel AcA34. Agarose gel electrophoresis of the purified inhibitor showed a single protein band with alpha1-mobility giving a single precipitation line on immunoelectrophoresis against anti-rat serum. A specific antiserum against the purified inhibitor was raised in rabbits. alpha1-I3 showed immunologic cross-reaction with human inter-alpha-trypsin inhibitor. alpha1-I3 formed a complex with trypsin, which was thereby inhibited; the electrophoretic mobility of the complex was less than that of free inhibitor. Inflammation, induced by turpentine, caused a decrease in the serum concentration of alpha1-I3 to 36% of the initial value within 48 h. alpha2 acute phase macroglobulin (alpha2-AP) showed a simultaneous increase to 7.1 g/l and alpha1-antitrypsin (alpha1-AT) to twice its normal value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号