首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The faithful and complete replication of DNA is necessary for the maintenance of genome stability. It is known, however, that replication forks stall at lesions in the DNA template and need to be processed so that replication restart can occur. In fission yeast, the Mus81-Eme1 endonuclease complex (Mus81-Mms4 in Saccharomyces cerevisiae) has been implicated in the processing of aberrant replication intermediates. In this report, we identify the human homolog of the Schizosaccharomyces pombe EME1 gene and have purified the human Mus81-Eme1 heterodimer. We show that Mus81-Eme1 is an endonuclease that exhibits a high specificity for synthetic replication fork structures and 3'-flaps in vitro. The nuclease cleaves Holliday junctions inefficiently ( approximately 75-fold less than flap or fork structures), although cleavage can be increased 6-fold by the presence of homologous sequences previously shown to permit base pair "breathing." We conclude that human Mus81-Eme1 is a flap/fork endonuclease that is likely to play a role in the processing of stalled replication fork intermediates.  相似文献   

2.
The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5' of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5' single-stranded tail, which is cleaved in the lagging strand template.  相似文献   

3.
Mus81-Eme1 are essential components of a Holliday junction resolvase.   总被引:22,自引:0,他引:22  
Mus81, a fission yeast protein related to the XPF subunit of ERCC1-XPF nucleotide excision repair endonuclease, is essential for meiosis and important for coping with stalled replication forks. These processes require resolution of X-shaped DNA structures known as Holliday junctions. We report that Mus81 and an associated protein Eme1 are components of an endonuclease that resolves Holliday junctions into linear duplex products. Mus81 and Eme1 are required during meiosis at a late step of meiotic recombination. The mus81 meiotic defect is rescued by expression of a bacterial Holliday junction resolvase. These findings constitute strong evidence that Mus81 and Eme1 are subunits of a nuclear Holliday junction resolvase.  相似文献   

4.
During meiosis, double-strand breaks (DSBs) lead to crossovers, thought to arise from the resolution of double Holliday junctions (HJs) by an HJ resolvase. In Schizosaccharomyces pombe, meiotic crossovers are produced primarily through a mechanism requiring the Mus81-Eme1 endonuclease complex. Less is known about the processes that produces crossovers during the repair of DSBs in mitotic cells. We employed an inducible DSB system to determine the role of Rqh1-Top3 and Mus81-Eme1 in mitotic DSB repair and crossover formation in S. pombe. In agreement with the meiotic data, crossovers are suppressed in cells lacking Mus81-Eme1. And relative to the wild type, rqh1Delta cells show a fourfold increase in crossover frequency. This suppression of crossover formation by Rqh1 is dependent on its helicase activity. We found that the synthetic lethality of cells lacking both Rqh1 and Eme1 is suppressed by loss of swi5(+), which allowed us to show that the excess crossovers formed in an rqh1Delta background are independent of Mus81-Eme1. This result suggests that a second process for crossover formation exists in S. pombe and is consistent with our finding that deletion of swi5(+) restored meiotic crossovers in eme1Delta cells. Evidence suggesting that Rqh1 also acts downstream of Swi5 in crossover formation was uncovered in these studies. Our results suggest that during Rhp51-dependent repair of DSBs, Rqh1-Top3 suppresses crossovers in the Rhp57-dependent pathway while Mus81-Eme1 and possibly Rqh1 promote crossovers in the Swi5-dependent pathway.  相似文献   

5.
During replication arrest, the DNA replication checkpoint plays a crucial role in the stabilization of the replisome at stalled forks, thus preventing the collapse of active forks and the formation of aberrant DNA structures. How this checkpoint acts to preserve the integrity of replication structures at stalled fork is poorly understood. In Schizosaccharomyces pombe, the DNA replication checkpoint kinase Cds1 negatively regulates the structure-specific endonuclease Mus81/Eme1 to preserve genomic integrity when replication is perturbed. Here, we report that, in response to hydroxyurea (HU) treatment, the replication checkpoint prevents S-phase-specific DNA breakage resulting from Mus81 nuclease activity. However, loss of Mus81 regulation by Cds1 is not sufficient to produce HU-induced DNA breaks. Our results suggest that unscheduled cleavage of stalled forks by Mus81 is permitted when the replisome is not stabilized by the replication checkpoint. We also show that HU-induced DNA breaks are partially dependent on the Rqh1 helicase, the fission yeast homologue of BLM, but are independent of its helicase activity. This suggests that efficient cleavage of stalled forks by Mus81 requires Rqh1. Finally, we identified an interplay between Mus81 activity at stalled forks and the Chk1-dependent DNA damage checkpoint during S-phase when replication forks have collapsed.  相似文献   

6.
Enzymatic activities that cleave Holliday junctions are required for the resolution of recombination intermediates and for the restart of stalled replication forks. Here we show that human cell-free extracts possess two distinct endonucleases that can cleave Holliday junctions. The first cleaves Holliday junctions in a structure- and sequence-specific manner, and associates with an ATP-dependent branch migration activity. Together, these activities promote branch migration/resolution reactions similar to those catalysed by the Escherichia coli RuvABC resolvasome. Like RuvC-mediated resolution, the products can be religated. The second, containing Mus81 protein, cuts Holliday junctions but the products are mostly non-ligatable. Each nuclease has a defined substrate specificity: the branch migration-associated resolvase is highly specific for Holliday junctions, whereas the Mus81-associated endonuclease is one order of magnitude more active upon replication fork and 3'-flap structures. Thus, both nucleases are capable of cutting Holliday junctions formed during recombination or through the regression of stalled replication forks. However, the Mus81-associated endonuclease may play a more direct role in replication fork collapse by catalysing the cleavage of stalled fork structures.  相似文献   

7.
Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks   总被引:5,自引:0,他引:5  
Osman F  Whitby MC 《DNA Repair》2007,6(7):1004-1017
Cells of all living organisms have evolved complex mechanisms that serve to stabilise, repair and restart stalled, blocked and broken replication forks. The heterodimeric Mus81-Eme1/Mms4 structure-specific endonuclease appears to play an important role(s) in homologous recombination-mediated processing of such perturbed forks. This enzyme has been implicated in the cleavage of stalled and blocked replication forks to initiate recombination, as well as in the processing of recombination intermediates that result from repairing damaged forks. In this review we assess the biochemical and genetic evidence for the mitotic role of Mus81-Eme1/Mms4 at replication forks and in repairing post-replication DNA damage. Mus81 appears to act when replication is impeded by genotoxins or by impairment of the replication machinery, or when arrested replication forks are not adequately protected. We discuss how its action is regulated by the S-phase cell cycle checkpoint, depending on the nature of the stalled or damaged fork. We also present a new way in which Mus81 may limit crossing over during the repair of post-replication gaps, and explore Mus81's interplay with other components of the recombination machinery, including the RecQ helicases that also play important roles in processing replication and recombination intermediates.  相似文献   

8.
Bolt EL  Lloyd RG 《Molecular cell》2002,10(1):187-198
RusA endonuclease cleaves Holliday junctions by introducing paired strand incisions 5' to CC dinucleotides. Coordinated catalysis is achieved when both subunits of the homodimer interact simultaneously with cleavage sites located symmetrically. This requirement confers Holliday junction specificity. Uncoupled catalysis occurs when binding interactions are disturbed. Genetic studies indicate that uncoupling occurs rarely in vivo, and DNA cleavage is therefore restricted to Holliday junctions. We exploited the specificity of RusA to identify the DNA substrates targeted by the RuvAB and RecG branch-migration proteins in vivo. We present evidence that replication restart in UV-irradiated cells relies on the processing of stalled replication forks by RecG helicase and of Holliday junctions by the RuvABC resolvasome, and that RuvAB alone may not promote repair.  相似文献   

9.
Mus81 is a highly conserved endonuclease with homology to the XPF subunit of the XPF-ERCC1 complex. In yeast Mus81 associates with a second subunit, Eme1 or Mms4, which is essential for endonuclease activity in vitro and for in vivo function. Human Mus81 binds to a homolog of fission yeast Eme1 in vitro and in vivo. We show that recombinant Mus81-Eme1 cleaves replication forks, 3' flap substrates, and Holliday junctions in vitro. By use of differentially tagged versions of Mus81 and Eme1, we find that Mus81 associates with Mus81 and that Eme1 associates with Eme1. Thus, complexes containing two or more Mus81-Eme1 units could function to coordinate substrate cleavage in vivo. Down-regulation of Mus81 by RNA interference reduces mitotic recombination in human somatic cells. The recombination defect is rescued by expression of a bacterial Holliday junction resolvase. These data provide direct evidence for a role of Mus81-Eme1 in mitotic recombination in higher eukaryotes and support the hypothesis that Mus81-Eme1 resolves Holliday junctions in vivo.  相似文献   

10.
Deoxyribonucleic acid (DNA) topoisomerases are essential for removing the supercoiling that normally builds up ahead of replication forks. The camptothecin (CPT) Top1 (topoisomerase I) inhibitors exert their anticancer activity by reversibly trapping Top1-DNA cleavage complexes (Top1cc's) and inducing replication-associated DNA double-strand breaks (DSBs). In this paper, we propose a new mechanism by which cells avoid Top1-induced replication-dependent DNA damage. We show that the structure-specific endonuclease Mus81-Eme1 is responsible for generating DSBs in response to Top1 inhibition and for allowing cell survival. We provide evidence that Mus81 cleaves replication forks rather than excises Top1cc's. DNA combing demonstrated that Mus81 also allows efficient replication fork progression after CPT treatment. We propose that Mus81 cleaves stalled replication forks, which allows dissipation of the excessive supercoiling resulting from Top1 inhibition, spontaneous reversal of Top1cc, and replication fork progression.  相似文献   

11.
Stabilization and processing of stalled replication forks is critical for cell survival and genomic integrity. We characterize a novel DNA repair heterodimer of Nse5 and Nse6, which are nonessential nuclear proteins critical for chromosome segregation in fission yeast. The Nse5/6 dimer facilitates DNA repair as part of the Smc5-Smc6 holocomplex (Smc5/6), the basic architecture of which we define. Nse5-Nse6 [corrected] (Nse5 and Nse6) [corrected] mutants display a high level of spontaneous DNA damage and mitotic catastrophe in the absence of the master checkpoint regulator Rad3 (hATR). Nse5/6 mutants are required for the response to genotoxic agents that block the progression of replication forks, acting in a pathway that allows the tolerance of irreparable UV lesions. Interestingly, the UV sensitivity of Nse5/6 [corrected] is suppressed by concomitant deletion of the homologous recombination repair factor, Rhp51 (Rad51). Further, the viability of Nse5/6 mutants depends on Mus81 and Rqh1, factors that resolve or prevent the formation of Holliday junctions. Consistently, the UV sensitivity of cells lacking Nse5/6 can be partially suppressed by overexpressing the bacterial resolvase RusA. We propose a role for Nse5/6 mutants in suppressing recombination that results in Holliday junction formation or in Holliday junction resolution.  相似文献   

12.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

13.
Functional studies strongly suggest that the Mus81-Eme1 complex resolves Holliday junctions (HJs) in fission yeast, but in vitro it preferentially cleaves flexible three-way branched structures that model replication forks or 3' flaps. Here we report that a nicked HJ is the preferred substrate of endogenous and recombinant Mus81-Eme1. Cleavage occurs specifically on the strand that opposes the nick, resulting in resolution of the structure into linear duplex products. Resolving cuts made by the endogenous Mus81-Eme1 complex on an intact HJ are quasi-simultaneous, indicating that Mus81-Eme1 resolves HJs by a nick and counternick mechanism, with a large rate enhancement of the second cut arising from the flexible nature of the nicked HJ intermediate. Recombinant Mus81-Eme1 is ineffective at making the first cut. We also report that HJs accumulate in a DNA polymerase alpha mutant that lacks Mus81, providing further evidence that the Mus81-Eme1 complex targets HJs in vivo.  相似文献   

14.
Doe CL  Dixon J  Osman F  Whitby MC 《The EMBO journal》2000,19(11):2751-2762
A key stage during homologous recombination is the processing of the Holliday junction, which determines the outcome of the recombination reaction. To dissect the pathways of Holliday junction processing in a eukaryote, we have targeted an Escherichia coli Holliday junction resolvase to the nuclei of fission yeast recombination-deficient mutants and analysed their phenotypes. The resolvase partially complements the UV and hydroxyurea hypersensitivity and associated aberrant mitoses of an rqh1(-) mutant. Rqh1 is a member of the RecQ subfamily of DNA helicases that control recombination particularly during S-phase. Significantly, overexpression of the resolvase in wild-type cells partly mimics the loss of viability, hyper-recombination and 'cut' phenotype of an rqh1(-) mutant. These results indicate that Holliday junctions form in wild-type cells that are normally removed in a non-recombinogenic way, possibly by Rqh1 catalysing their reverse branch migration. We propose that in the absence of Rqh1, replication fork arrest results in the accumulation of Holliday junctions, which can either impede sister chromatid segregation or lead to the formation of recombinants through Holliday junction resolution.  相似文献   

15.
Repair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible for producing these intermediates are unknown. Here we show that Mus81, a component of the Mus81-Eme1 structure-specific endonuclease, is involved in generating the ICL-induced DSBs in mouse embryonic stem (ES) cells in S phase. Given the DNA junction cleavage specificity of Mus81-Eme1 in vitro, DNA damage-stalled replication forks are suitable in vivo substrates. Interestingly, generation of DSBs from replication forks stalled due to DNA damage that affects only one of the two DNA strands did not require Mus81. Furthermore, in addition to a physical interaction between Mus81 and the homologous recombination protein Rad54, we show that Mus81(-/-) Rad54(-/-) ES cells were as hypersensitive to ICL agents as Mus81(-/-) cells. We propose that Mus81-Eme1- and Rad54-mediated homologous recombination are involved in the same DNA replication-dependent ICL repair pathway.  相似文献   

16.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

17.
Replication forks may stall when they reach a block on the DNA template such as DNA damage, and the recovery of such stalled replication forks plays a crucial role in the maintenance of genomic stability. Holliday junctions, which are X-shaped DNA structures, are formed at the stalled replication forks and can accumulate if they are not cleaved by structure-specific endonucleases. Recently, a novel nuclease involved in resolving Holliday junction-like structures, Mus81, has been reported in yeast and humans. MUS81 has sequence homology to another DNA nuclease, XPF, which, with its partner ERCC1, makes the 5' incision during nucleotide excision repair. MUS81 also has a binding partner named Mms4 in Saccharomyces cerevisiae and Eme1 in Schizosaccharomyces pombe, but no such partner was identified in human cells. Here, we report identification of the binding partner of human MUS81, which we designate hMMS4. Using immunoaffinity purification we show that hMUS81 or hMMS4 alone have no detectable nuclease activity, but that the hMUS81.hMMS4 complex is a structure-specific nuclease that is capable of resolving fork structures.  相似文献   

18.
Yeast and human Eme1 protein, in complex with Mus81, constitute an endonuclease that cleaves branched DNA structures, especially those arising during stalled DNA replication. We identified mouse Eme1, and show that it interacts with Mus81 to form a complex that preferentially cleaves 3'-flap structures and replication forks rather than Holliday junctions in vitro. We demonstrate that Eme1-/- embryonic stem (ES) cells are hypersensitive to the DNA cross-linking agents mitomycin C and cisplatin, but only mildly sensitive to ionizing radiation, UV radiation and hydroxyurea treatment. Mammalian Eme1 is not required for the resolution of DNA intermediates that arise during homologous recombination processes such as gene targeting, gene conversion and sister chromatid exchange (SCE). Unlike Blm-deficient ES cells, increased SCE was seen only following induced DNA damage in Eme1-deficient cells. Most importantly, Eme1 deficiency led to spontaneous genomic instability. These results reveal that mammalian Eme1 plays a key role in DNA repair and the maintenance of genome integrity.  相似文献   

19.
Mus81-Mms4 and Rad1-Rad10 are homologous structure-specific endonucleases that cleave 3' branches from distinct substrates and are required for replication fork stability and nucleotide excision repair, respectively, in the yeast Saccharomyces cerevisiae. We explored the basis of this biochemical and genetic specificity. The Mus81-Mms4 cleavage site, a nick 5 nucleotides (nt) 5' of the flap, is determined not by the branch point, like Rad1-Rad10, but by the 5' end of the DNA strand at the flap junction. As a result, the endonucleases show inverse substrate specificity; substrates lacking a 5' end within 4 nt of the flap are cleaved poorly by Mus81-Mms4 but are cleaved well by Rad1-10. Genetically, we show that both mus81 and sgs1 mutants are sensitive to camptothecin-induced DNA damage. Further, mus81 sgs1 synthetic lethality requires homologous recombination, as does suppression of mutant phenotypes by RusA expression. These data are most easily explained by a model in which the in vivo substrate of Mus81-Mms4 and Sgs1-Top3 is a 3' flap recombination intermediate downstream of replication fork collapse.  相似文献   

20.
Ulrich Rass 《Chromosoma》2013,122(6):499-515
Genome duplication requires that replication forks track the entire length of every chromosome. When complications occur, homologous recombination-mediated repair supports replication fork movement and recovery. This leads to physical connections between the nascent sister chromatids in the form of Holliday junctions and other branched DNA intermediates. A key role in the removal of these recombination intermediates falls to structure-specific nucleases such as the Holliday junction resolvase RuvC in Escherichia coli. RuvC is also known to cut branched DNA intermediates that originate directly from blocked replication forks, targeting them for origin-independent replication restart. In eukaryotes, multiple structure-specific nucleases, including Mus81–Mms4/MUS81–EME1, Yen1/GEN1, and Slx1–Slx4/SLX1–SLX4 (FANCP) have been implicated in the resolution of branched DNA intermediates. It is becoming increasingly clear that, as a group, they reflect the dual function of RuvC in cleaving recombination intermediates and failing replication forks to assist the DNA replication process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号