首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD44 regulates myoblast migration and differentiation   总被引:5,自引:0,他引:5  
CD44 is a transmembrane protein that plays a role in cell-cell interactions and motility in a number of cell types. Cell-cell interactions are critical for myoblast differentiation and fusion but whether CD44 regulates myogenesis is unknown. Here, we show that CD44 plays a functional role in early myogenesis. Analyses of myofiber cross-sectional area, after local injury in mouse tibialis anterior (TA) muscles, revealed that growth was transiently delayed in the absence of CD44. A muscle-intrinsic role for CD44 is suggested as primary myoblasts from CD44(-/-) mice displayed attenuated differentiation and subsequent myotube formation at early times in a differentiation-inducing in vitro environment. Chemotaxis of CD44(-/-) myoblasts toward hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF) was totally abrogated, although expression of their respective receptors did not appear to differ from wild-type. Furthermore, motility of CD44(-/-) myoblasts was decreased at early stages of differentiation as determined by time-lapse microscopy. Wild-type myoblasts contained two subpopulations of slow- and fast-migrating cells, whereas CD44(-/-) myoblasts were composed predominantly of the slower migrating subpopulation. Taken together, these data suggest that myoblast migration and differentiation are closely linked and CD44 is a key regulator.  相似文献   

2.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

3.
Myoblast fusion is critical for the formation, growth, and maintenance of skeletal muscle. The initial formation of nascent myotubes requires myoblast-myoblast fusion, but further growth involves myoblast-myotube fusion. We demonstrate that the mannose receptor (MR), a type I transmembrane protein, is required for myoblast-myotube fusion. Mannose receptor (MR)-null myotubes were small in size and contained a decreased myonuclear number both in vitro and in vivo. We hypothesized that this defect may arise from a possible role of MR in cell migration. Time-lapse microscopy revealed that MR-null myoblasts migrated with decreased velocity during myotube growth and were unable to migrate in a directed manner up a chemoattractant gradient. Furthermore, collagen uptake was impaired in MR-null myoblasts, suggesting a role in extracellular matrix remodeling during cell motility. These data identify a novel function for MR during skeletal muscle growth and suggest that myoblast motility may be a key aspect of regulating myotube growth.  相似文献   

4.
Chemokines are critical in controlling lymphocyte traffic and migration. The CXC chemokine CXCL12/SDF-1alpha interacts with its receptor CXCR4 to induce the migration of a number of different cell types. Although an understanding of the physiological functions of this chemokine is emerging, the mechanism by which it regulates T cell migration is still unclear. We show here that the Tec family kinase ITK is activated rapidly following CXCL12/SDF-1alpha stimulation, and this requires Src and phosphatidylinositol 3-kinase activities. ITK regulates the ability of CXCL12/SDF-1alpha to induce T cell migration as overexpression of wild-type ITK-enhanced migration, and T cells lacking ITK exhibit reduced migration as well as adhesion in response to CXCL12/SDF-1alpha. Further analysis suggests that ITK may regulate CXCR4-mediated migration and adhesion by altering the actin cytoskeleton, as ITK null T cells were significantly defective in CXCL12/SDF-1a-mediated actin polymerization. Our data suggest that ITK may regulate the ability of CXCR4 to induce T cell migration.  相似文献   

5.
《The Journal of cell biology》1989,109(4):1779-1786
During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891- 897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinositol-specific phospholipase C (PI-PLC). The effect of PI-PLC on myoblast adhesion is dose dependent and inhibited by D-myo- inositol 1-monophosphate and the effect on myotube formation is reversible, suggesting a specific, nontoxic effect on myogenesis by the enzyme. A soluble form of adhesion-related glycoproteins is released from fusion-competent myoblasts by treatment with PI-PLC as evidenced by (a) the ability of phospholipase C (PLC)-released material to block the adhesion-perturbing activity of a polyclonal antiserum to intact myoblasts; and (b) the ability of PLC-released glycoprotein to stimulate adhesion-perturbing antisera when injected into mice. PI-PLC treatment of fusion-competent myoblasts releases an isoform of N-CAM into the supernate, suggesting that N-CAM may participate in mediating myoblast interaction during myogenesis.  相似文献   

6.
IL-4 acts as a myoblast recruitment factor during mammalian muscle growth   总被引:10,自引:0,他引:10  
Horsley V  Jansen KM  Mills ST  Pavlath GK 《Cell》2003,113(4):483-494
  相似文献   

7.
Chemokine-driven migration is accompanied by polarization of the cell body and of the intracellular signaling machinery. The extent to which chemokine receptors polarize during chemotaxis is currently unclear. To analyze the distribution of the chemokine receptor CXCR4 during SDF-1 (CXCL12)-induced chemotaxis, we retrovirally expressed a CXCR4-GFP fusion protein in the CXCR4-deficient human hematopoietic progenitor cell line KG1a. This KG1a CXCR4-GFP cell line showed full restoration of SDF-1 responsiveness in assays detecting activation of ERK1/2 phosphorylation, actin polymerization, adhesion to endothelium under conditions of physiological flow, and (transendothelial) chemotaxis. When adhered to cytokine-activated endothelium in the absence of SDF-1, CXCR4 did not localize to the leading edge of the cell but was uniformly distributed over the plasma membrane. In contrast, when SDF-1 was immobilized on cytokine-activated endothelium, the CXCR4-GFP receptors that were present on the cell surface markedly redistributed to the leading edge of migrating cells. In addition, CXCR4-GFP co-localized with lipid rafts in the leading edge of SDF-1-stimulated cells, at the sites of contact with the endothelial surface. Inhibition of lipid raft formation prevents SDF-1-dependent migration, internalization of CXCR4, and polarization to the leading edge of CXCR4, indicating that CXCR4 surface expression and signaling requires lipid rafts. These data show that SDF-1, immobilized on activated human endothelium, induces polarization of CXCR4 to the leading edge of migrating cells, revealing co-operativity between chemokine and substrate in the control of cell migration.  相似文献   

8.
9.
10.
Han JW  Lee HJ  Bae GU  Kang JS 《Cellular signalling》2011,23(7):1162-1169
The Integrin-mediated cell adhesion to the extracellular matrix is implicated in the control of proliferation, survival, migration and differentiation of myoblasts. Focal adhesion kinase (FAK) mediates signals from Integrins and plays an essential role in myotube formation. Cdo forms a multiprotein complex that includes other cell adhesion molecules like Cadherins and Boc. Multiple signals emanate from such complexes, including Cdc42 and p38MAPK pathways to activate MyoD. Here we show that C2C12 myoblasts cultured in suspension or on Poly-L-Lysine (PLL), a well known Integrin-independent substratum, failed to express Cdo and MyoD, while the expression of Cadherins and Boc was unchanged. In addition, the activation of Akt and p38MAPK as well as the expression of Cdc42 was affected in these cells. Overexpression of FAK rescued MyoD and Cdo expression as well as myotube formation of C2C12 cells on PLL. Furthermore, reintroduction of Cdo induced enhanced myotube formation on PLL and increased the expression of myogenic markers. Inhibition of ROCK or overexpression of Cdc42-V12 in C2C12 cells upregulated Cdc42 and MyoD expression and rescued defective myoblast differentiation. Taken together, these data indicate that the Integrin/FAK signaling pathway is required for myoblast differentiation by regulating the expression of the promyogenic factors, Cdo, MyoD and Cdc42.  相似文献   

11.
Our previous studies suggest that the cysteine protease cathepsin B (catB) is involved in skeletal myoblast differentiation (myogenesis). To test this hypothesis, we examined the effect of trapping one of the two catB alleles on the ability of C2C12 cells to differentiate. During differentiation, catB gene-trapped C2C12 mouse myoblasts (RT-27) demonstrated a similar pattern of intracellular catB activity and protein expression compared to that observed in control C2C12 myoblasts and myoblasts trapped in a gene other than catB. However, compared to control myoblast cell lines, levels of catB activity and protein at each stage of RT-27 differentiation were reduced. The reductions in levels of catB were associated with reductions in several myogenic phenotypes including reduced levels of creatine phosphokinase activity and myosin heavy chain protein, two late biochemical markers of myogenesis, and reduced myotube size and extent of myotube formation over time. Comparable reductions were not observed for myogenin protein, an early biochemical marker of myogenesis, or in myokinase activity and catB related cathepsin L-type activity, two non-specific proteins. Finally, both control and catB gene-trapped myoblasts secreted active catB at pH 7.0. However levels of active pericellular/secreted catB were 50% lower in catB gene-trapped myoblasts. Collectively, these results support a functional link between catB expression and skeletal myogenesis and suggest a role for active pericellular/secreted catB in myoblast fusion.  相似文献   

12.
The formation of multinucleate skeletal muscle cells (myotubes) is a Ca2(+)-dependent process involving the interaction and fusion of mononucleate muscle cells (myoblasts). Specific cell-cell adhesion precedes lipid bilayer union during myoblast fusion and has been shown to involve both Ca2(+)-independent (CI)2 and Ca2(+)-dependent (CD) mechanisms. In this paper we present evidence that CD myoblast adhesion involves a molecule similar or identical to two known CD adhesion glycoproteins, N-cadherin and A-CAM. These molecules were previously identified by other laboratories in brain and cardiac muscle, respectively, and are postulated to be the same molecule. Antibodies to N-cadherin and A-CAM immunoblotted a similar band with a molecular weight of approximately 125,000 in extracts of brain, heart, and pectoral muscle isolated from chick embryos and in extracts of muscle cells grown in vitro at Ca2+ concentrations that either promoted or inhibited myotube formation. In assays designed to measure the interaction of fusion-competent myoblasts in suspension, both polyclonal and monoclonal anti-N-cadherin antibodies inhibited CD myoblast aggregation, suggesting that N-cadherin mediates the CD aspect of myoblast adhesion. Anti-N-cadherin also had a partial inhibitory effect on myotube formation likely due to the effect on myoblast-myoblast adhesion. The results indicate that N-cadherin/A-CAM plays a role in myoblast recognition and adhesion during skeletal myogenesis.  相似文献   

13.
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.  相似文献   

14.
The chemokine, SDF-1/CXCL12, and its receptor, CXCR4, have been implied to play major roles during limb myogenesis. This concept was recently challenged by the identification of CXCR7 as an alternative SDF-1 receptor, which can either act as a scavenger receptor, a modulator of CXCR4, or an active chemokine receptor. We have now re-examined this issue by determining whether SDF-1 would signal to C2C12 myoblasts and subsequently influence their differentiation via CXCR4 and/or CXCR7. In addition, we have analyzed CXCR7, CXCR4, and SDF-1 expression in developing and injured mouse limb muscles. We demonstrate that in undifferentiated C2C12 cells, SDF-1-dependent cell signaling and resulting inhibitory effects on myogenic differentiation are entirely mediated by CXCR4. We further demonstrate that CXCR7 expression increases in differentiating C2C12 cells, which in turn abrogates CXCR4 signaling. Moreover, consistent with the view that CXCR4 and CXCR7 control limb myogenesis in vivo by similar mechanisms, we found that CXCR4 expression is the highest in late embryonic hindlimb muscles and drops shortly after birth when secondary muscle growth terminates. Vice versa, CXCR7 expression increased perinatally and persisted into adult life. Finally, underscoring the role of the SDF-1 system in muscle regeneration, we observed that SDF-1 is continuously expressed by endomysial cells of postnatal and adult muscle fibers. Analysis of dystrophin-deficient mdx mice additionally revealed that muscle regeneration is associated with muscular re-expression of CXCR4. The apparent tight control of limb muscle development and regeneration by CXCR4 and CXCR7 points to these chemokine receptors as promising therapeutic targets for certain muscle disorders.  相似文献   

15.
Alpha-mangostin, a xanthone contained mostly in mangosteen pericarp, has been reported to exert various biological functions. However, little is known about involvement of this xanthone in the muscle differentiation process. Here, we report the effect of α-mangostin on murine skeletal muscle-derived C2C12 myoblasts. α-mangostin stimulated myoblast differentiation leading to myotube formation. DNA microarray analysis revealed that genes associated with myoblast differentiation and muscle cell component formation were up-regulated in α-mangostin-treated cells. These results indicate that α-mangostin promotes myoblast differentiation through modulating the gene-expression profile in myoblasts.  相似文献   

16.
The transforming growth factor (TGF)-β inducible early gene (TIEG)-1 is implicated in the control of cell proliferation, differentiation, and apoptosis in some cell types. Since TIEG1 functioning may be associated with TGF-β, a suppressor of myogenesis, TIEG1 is also likely to be involved in myogenesis. Therefore, we investigated the function of TIEG1 during myogenic differentiation in vitro using the murine myoblasts cell line, C2C12. TIEG1 expression increased during differentiation of C2C12 cells. Constitutive expression of TIEG1 reduced survival and decreased myotube formation. Conversely, knocking down TIEG1 expression increased the number of viable cells during differentiation, and accelerated myoblast fusion into multinucleated myotubes. However, expression of the myogenic differentiation marker, myogenin, remained unaffected by TIEG1 knockdown. The mechanism underlying these events was investigated by focusing on the regulation of myoblast numbers after induction of differentiation. The knockdown of TIEG1 led to changes in cell cycle status and inhibition of apoptosis during the initial stages of differentiation. Microarray and real-time PCR analyses showed that the regulators of cell cycle progression were highly expressed in TIEG1 knockdown cells. Therefore, TIEG1 is a negative regulator of the myoblast pool that causes inhibition of myotube formation during myogenic differentiation.  相似文献   

17.
Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.  相似文献   

18.
Fusion of mononucleated myoblasts to generate multinucleated myotubes is a critical step in skeletal muscle development. Filopodia, the actin cytoskeleton based membrane protrusions, have been observed early during myoblast fusion, indicating that they could play a direct role in myogenic differentiation. The control of filopodia formation in myoblasts remains poorly understood. Here we show that the expression of IRSp53 (Insulin Receptor Substrate protein 53kDa), a known regulator of filopodia formation, is down-regulated during differentiation of both mouse primary myoblasts and a mouse myoblast cell line C2C12. Over-expression of IRSp53 in C2C12 cells led to induction of filopodia and decrease in cell adhesion, concomitantly with inhibition of myogenic differentiation. In contrast, knocking down the IRSp53 expression in C2C12 cells led to a small but significant increase in myotube development. The decreased cell adhesion of C2C12 cells over-expressing IRSp53 is correlated with a reduction in the number of vinculin patches in these cells. Mutations in the conserved IMD domain (IRSp53 and MIM (missing in metastasis) homology domain) or SH3 domain of IRSp53 abolished the ability of this protein to inhibit myogenic differentiation and reduce cell adhesion. Over-expression of the IMD domain alone was sufficient to decrease the cell-extracellular matrix adhesion and to inhibit myogenesis in a manner dependent on its function in membrane shaping. Based on our data, we propose that IRSp53 is a negative regulator of myogenic differentiation which correlates with the observed down regulation of IRSp53 expression during myoblast differentiation to myotubes.  相似文献   

19.

Background

In addition to their physiologic effects in inflammation and angiogenesis, chemokines are involved in cancer pathology. The CXC-chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 mediates its biological activities through activation of G protein-coupled receptor CXCR4 and binds to glycosaminoglycans (GAGs).

Methods

Using Bio-coat cell migration chambers, specific antagonists, flow cytometry and RNA interference, we evaluate the involvement of heparan sulfate proteoglycans (HSPG) in the SDF-1/CXCL12-induced invasion of human cervix epitheloid carcinoma HeLa cells.

Results

The SDF-1/CXCL12-induced cell invasion is dependent on CXCR4. Furthermore, Protein Kinase C delta (PKC δ) and c-jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) are implicated in this event, but not extracellular signal-regulated kinase (ERK) 1/2. Moreover, the invasion of HeLa cells induced by SDF-1/CXCL12 was dependent on matrix metalloproteinase-9 (MMP-9). The pre-incubation of HeLa cells with heparin or with anti-heparan sulfate antibodies or with β-d-xyloside inhibited SDF-1/CXCL12-mediated cell invasion. Furthermore, the down-regulation of syndecan-4, a heparan sulfate proteoglycan, decreased SDF-1/CXCL12-mediated HeLa cell invasion. GAGs, probably on syndecan-4, are involved in SDF-1/CXCL12-mediated cell chemotaxis.

General significance

These data suggest that targeting the glycosaminoglycan/chemokine interaction could be a new therapeutic approach for carcinomas in which SDF-1/CXCL12 is involved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号