首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How do vertebrate epithelial appendages form from the flat epithelia? Following the formation of feather placodes, the previously radially symmetrical primordia become anterior-posterior (A-P) asymmetrical and develop a proximo-distal (P-D) axis. Analysis of the molecular heterogeneity revealed a surprising parallel of molecular profiles in the A-P feather buds and the ventral-dorsal (V-D) Drosophila appendage imaginal discs. The functional significance was tested with an in vitro feather reconstitution model. Wnt-7a expression initiated all over the feather tract epithelium, intensifying as it became restricted first to the primordia domain, then to an accentuated ring pattern within the primordia border, and finally to the posterior bud. In contrast, sonic hedgehog expression was induced later as a dot within the primordia. RCAS was used to overexpress Wnt-7a in reconstituted feather explants derived from stage 29 dorsal skin to further test its function in feather formation. Control skin formed normal elongated, slender buds with A-P orientation, but Wnt-7a overexpression led to plateau-like skin appendages lacking an A-P axis. Feathers in the Wnt-7a overexpressing skin also had inhibited elongation of the P-D axes. This was not due to a lack of cell proliferation, which actually was increased although randomly distributed. While morphogenesis was perturbed, differentiation proceeded as indicated by the formation of barb ridges. Wnt-7a buds have reduced expression of anterior (Tenascin) bud markers. Middle (Notch-1) and posterior bud markers including Delta-1 and Serrate-1 were diffusely expressed. The results showed that ectopic Wnt-7a expression enhanced properties characteristic of the middle and posterior feather buds and suggest that P-D elongation of vertebrate skin appendages requires balanced interactions between the anterior and posterior buds.  相似文献   

2.
An autoradiographic analysis was undertaken to examine the localization of retinoids applied exogenously to chick limb buds. Ion-exchange beads (AGI-X2) containing a tritium-labeled synthetic retinoid, Am80, were implanted to various regions of chick wing buds. This synthetic retinoid is known to induce a duplicated limb pattern as retinoic acid (RA) does. One to 24 hours after the application, wing buds were fixed, sectioned, and prepared for autoradiography. Heavy labeling was observed in the peripheral region of the wing mesoderm, but no gradient along the antero-posterior axis was found.
These results suggest that the peripheral region of the limb bud may be important for the morphogenetic function of RA. Tissue-bound retinoids may not form an antero-posterior concentration gradient when retinoids are added to the anterior margin of the chick limb bud.  相似文献   

3.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   

4.
To understand cell interactions during induction of skin appendages, we studied the roles of adhesion molecules N-CAM, tenascin, integrin, and fibronectin during feather development. Tenascin appeared in a periodic pattern on epithelia and was so far the earliest molecule detected in placodes. Three placode domains were identified: the anterior was positive for tenascin, the distal positive for N-CAM, and the posterior lacking both. Integrin appeared in dermal-epidermal junctions of placodes. In feather buds, sagittal sections revealed a transient anterior-posterior asymmetry with tenascin and N-CAM enriched in the anterior mesoderm. Tangential sections revealed a lateral-medial asymmetry with tenascin distributed in a ring shape and N-CAM in an "X" shape. Integrin was diffusely distributed within buds. Later tenascin and N-CAM were enriched in dermal papilla, the inducer of skin appendages. Perturbation of embryonic skin explant cultures with antibodies showed that anti-integrin beta 1 and anti-fibronectin blocked epithelial-mesenchymal interaction, anti-N-CAM caused uneven segregation of mesenchymal condensation, and anti-tenascin inhibited feather bud elongation. Dose-response curves showed gradual effects by these antibodies. The results indicated that these adhesion molecules are independently regulated and each contributes in different phases during morphogenesis of skin appendages.  相似文献   

5.
Skin morphogenesis occurs in successive stages. First, the skin forms distinct regions (macropatterning). Then skin appendages with particular shapes and sizes form within each region (micropatterning). Ectopic DKK expression inhibited dermis formation in feather tracts and individual buds, implying the importance of Wnts, and prompted the assessment of individual Wnt functions at different morphogenetic levels using the feather model. Wnt 1, 3a, 5a and 11 initially were expressed moderately throughout the feather tract then were up-regulated in restricted regions following two modes: Wnt 1 and 3a became restricted to the placodal epithelium, then to the elongated distal bud epidermis; Wnt 5a and 11 intensified in the inter-tract region and interprimordia epidermis or dermis, respectively, then appeared in the elongated distal bud dermis. Their role in feather tract formation was determined using RCAS mediated misexpression in ovo at E2/E3. Their function in periodic feather patterning was examined by misexpression in vitro using reconstituted E7 skin explant cultures. Wnt 1 reduced spinal tract size, but enhanced feather primordia size. Wnt 3a increased dermal thickness, expanded the spinal tract size, reduced interbud domain spacing, and produced non-tapering "giant buds". Wnt 11 and dominant negative Wnt 1 enhanced interbud spacing, and generated thinner buds. In cultured dermal fibroblasts, Wnt 1 and 3a stimulated cell proliferation and activated the canonical beta-catenin pathway. Wnt 11 inhibited proliferation but stimulated migration. Wnt 5a and 11 triggered the JNK pathway. Thus distinctive Wnts have positive and negative roles in forming the dermis, tracts, interbud spacing and the growth and shaping of individual buds.  相似文献   

6.
We have been using feather development as a model for understanding the molecular basis of pattern formation and to explore the roles of homeoproteins, retinoids and adhesion molecules in this process. Two kinds of homeobox (Hox) protein gradients in the skin have been identified: a ‘microgradient’ within a single feather bud and a ‘macrogradient’ across the feather tract. The asynchronous alignment of different Hox macrogradients establishes a unique repertoire of Hox expression patterns in skin appendages within the integument, designated here as the ‘Hox codes of skin appendages’. It is hypothesized that these Hox codes contribute to the phenotypic determination of skin appendages. High doses of retinoic acid cause a morphological transformation between feather and scale, while low doses of retinoic acid cause an alteration of the axial orientation of skin appendages. We have tested the ability of molecules directly involved in the feather formation process to mediate the action of the Hox codes, and surmise that adhesion molecules are potential candidates. Using specific Fabs to suppress the activity of adhesion molecules, we have found that L-CAM is involved in the formation of the hexagonal pattern, N-CAM is involved in mediating dermal condensations, tenascin is involved in feather bud growth and elongation, and integrin β-1 is essential for epithelial-mesenchymal interactions. More work is in progress to fully understand the molecular pathways regulating the feather formation process.  相似文献   

7.
Gradients of homeoproteins in developing feather buds   总被引:7,自引:0,他引:7  
Homeoproteins are functionally involved in pattern formation. Recently, homeoproteins have been shown to be distributed in a graded fashion in developing limb buds. Here we examine the expression of homeoproteins in chicken feather development by immunocytochemical localization. We find that XlHbox 1 antigen is present in cell nuclei and is distributed in a gradient in the mesoderm of developing feather buds, with strongest expression in the anterior-proximal region. The gradient is most obvious in feather buds from the mid-trunk level. Feather buds from the scapular level express very high levels of XlHbox 1 and feather buds from the caudal region express no XlHbox 1, suggesting that a broad gradient along the body axis is superimposed on a smaller gradient within each individual feather bud. Feather ectoderm also expresses XlHbox 1 antigen but without an obvious graded pattern. Another homeoprotein, Hox 5.2, is also expressed in developing feather buds in a graded way, and its distribution pattern is partially complementary to that of XlHbox 1. These observations suggest that homeoproteins may be involved in setting up the anteroposterior polarity of cell fields at different levels, first for the body axis, then for the limb axis and finally for the feather axis.  相似文献   

8.
How do epithelial cells in developing skin accommodate the constantly growing embryo? Where do cells in skin appendages come from? Are they derivatives of a single appendage stem cell, or are they polyclonal? Here we analyze these issues in developing chicken skin using a replication-defective virus carrying beta-galactosidase and DiI microinjections. The results demonstrate that in early skin, epithelial cells labelled near the spine show a parallel linear stripe distribution pattern that is perpendicular to the midline of the trunk. This is similar to the human lines of Blaschko, a linear pattern on the skin, which many skin nevoid or acquired disorders follow. In later skin, feather buds form and contain a mixture of labeled and unlabeled cells, attesting to their polyclonal origin. When cells are traced for shorter time intervals, the labeled progeny appear to follow certain rules. The degree of cell dispersion and mixing increases with a longer incubation period between the time of labeling and detection. The spatial maturation sequence of skin appendages is not regulated by the order in which epithelial cells are generated. Epithelial cells at this developmental stage are pluripotent and competent to respond to new signals to assume appropriate fates according to their micro-environment. The results suggest that local interactions act upon the originally linearly deposited pluripotential epithelial cells to form skin appendages.  相似文献   

9.
Selective cell death by apoptosis plays important roles in organogenesis. Apoptotic cells are observed in the developmental and homeostatic processes of several ectodermal organs, such as hairs, feathers, and mammary glands. In chick feather development, apoptotic events have been observed during feather morphogenesis, but have not been investigated during early feather bud formation. Previously, we have reported a method for generating feather buds on a bioengineered skin from dissociated skin epithelial and mesenchymal cells in three-dimensional culture. During the development of the bioengineered skin, epithelial cavity formation by apoptosis was observed in the epithelial tissue. In this study, we examined the selective epithelial cell death during the bioengineered skin development. Histological analyses suggest that the selective epithelial cell death in the bioengineered skin was induced by caspase-3-related apoptosis. The formation of feather buds of the bioengineered skin was disturbed by the treatment with a pan-caspase inhibitor. The pan-caspase inhibitor treatment suppressed the rearrangement of the epithelial layer and the formation of dermal condensation, which are thought to be essential step to form feather buds. The suppression of the formation of feather buds on the pan-caspase inhibitor-treated skin was partially compensated by the addition of a GSK-3β inhibitor, which activates Wnt/β-catenin signaling. These results suggest that the epithelial cell death is involved in the formation of feather buds of the bioengineered skin. These observations also suggest that caspase activities and Wnt/β-catenin signaling may contribute to the formation of epithelial and mesenchymal components in the bioengineered skin.  相似文献   

10.
Summary The distribution of various extracellular matrix components was studied in frozen sections of embryonic (14–18 days) and early postnatal (birth and 4 days post parturn) dorsal mouse skin using monospecific antibodies and indirect immunofluorescence. Basement membrane zone components — type IV collagen, laminin and heparan sulphate proteoglycan — were found to be uniformly and unchangingly distributed along the dermal-epidermal junction. In contrast, the distribution of interstitial matrix components — types I and III collagen, and fibronectin — was heterogeneous and varied with the stages of hair development. Collagens became sparse and were eventually completely removed from the prospective dermal papilla and from a one-cell-thick sheath of dermal cells around hair buds. They remained absent from the dermal papilla throughout hair organogenesis. Fibronectin was always present around dermal papilla cells and was particularly abundant along the dermal-epidermal junction of hair rudiments, as well as underneath hair buds. In contrast, in interfollicular skin, collagens accumulated in increasing density, while fibronectin became progressively sparser. It thus appears that interstitial collagens and fibronectin are distributed in a manner which is related to hair morphogenesis. In morphogenetically active regions, collagen density is low, while that of fibronectin is high. Conversely, in histologically stabilized zones, collagen is abundant and fibronectin is sparse. This microheterogeneous distribution of interstitial collagens and of fibronectin might thus constitute part of the morphogenetic message that the dermis is known to transmit to the epidermis during the development of skin and of cutaneous appendages.  相似文献   

11.
12.
We have examined the effect of retinoic acid (RA) on axial pattern formation during bud development of the ascidian, Polyandrocarpa misakiensis . A bead containing various concentrations of RA was implanted into the distal portion of a bud at a site where morphogenic events do not normally occur. Control buds were implanted with beads containing dimethyl sulfoxide (DMSO), the solvent of RA. No apparent effect was observed in these buds containing beads treated with DMSO. In contrast, beads containing 100 μg/ml of RA could induce ectopic structures in the distal portion of buds in about 30% of the cases. The resulting animals had completely duplicated antero-posterior axes. Histological studies showed that, within two days of RA treatment, atrial epithelial cells situated just beneath the implanted bead became thickened and formed a gut rudiment that resembled the posterior structure of the animal. The effect of RA treatment was dose-dependent. The minimum concentration of RA required to induce a secondary axis was 100 ng/ml. Beads containing 1 mg/ml of RA had a lethal effect on the cells that surrounded the beads. These results are discussed in relation to the role of RA in axis formation and the mechanism by which positional values are specified during normal and aberrant bud development in ascidians.  相似文献   

13.
We explored the role of beta-catenin in chicken skin morphogenesis. Initially beta-catenin mRNA was expressed at homogeneous levels in the epithelia over a skin appendage tract field which became transformed into a periodic pattern corresponding to individual primordia. The importance of periodic patterning was shown in scaleless mutants, in which beta-catenin was initially expressed normally, but failed to make a punctuated pattern. To test beta-catenin function, a truncated armadillo fragment was expressed in developing chicken skin from the RCAS retrovirus. This produced a variety of phenotypic changes during epithelial appendage morphogenesis. In apteric and scale-producing regions, new feather buds with normal-appearing follicle sheaths, dermal papillae, and barb ridges were induced. In feather tracts, short, wide, and curled feather buds with abnormal morphology and random orientation formed. Epidermal invaginations and placode-like structures formed in the scale epidermis. PCNA staining and the distribution of molecular markers (SHH, NCAM, Tenascin-C) were characteristic of feather buds. These results suggest that the beta-catenin pathway is involved in modulating epithelial morphogenesis and that increased beta-catenin pathway activity can increase the activity of skin appendage phenotypes. Analogies between regulated and deregulated new growths are discussed.  相似文献   

14.
To examine the role of development in the origin of evolutionary novelties, we investigated the developmental mechanisms involved in the formation of a complex morphological novelty-branched feathers. We demonstrate that the anterior-posterior expression polarity of Sonic hedgehog (Shh) and Bone morphogenetic protein 2 (Bmp2) in the primordia of feathers, avian scales, and alligator scales is conserved and phylogenetically primitive to archosaurian integumentary appendages. In feather development, derived patterns of Shh-Bmp2 signaling are associated with the development of evolutionarily novel feather structures. Longitudinal Shh-Bmp2 expression domains in the marginal plate epithelium between barb ridges provide a prepattern of the barbs and rachis. Thus, control of Shh-Bmp2 signaling is a fundamental component of the mechanism determining feather form (i.e., plumulaceous vs. pennaceous structure). We show that Shh signaling is necessary for the formation and proper differentiation of a barb ridge and that it is mediated by Bmp signaling. BMP signaling is necessary and sufficient to negatively regulate Shh expression within forming feather germs and this epistatic relationship is conserved in scale morphogenesis. Ectopic SHH and BMP2 signaling leads to opposing effects on proliferation and differentiation within the feather germ, suggesting that the integrative signaling between Shh and Bmp2 is a means to regulate controlled growth and differentiation of forming skin appendages. We conclude that Shh and Bmp signaling is necessary for the formation of barb ridges in feathers and that Shh and Bmp2 signaling constitutes a functionally conserved developmental signaling module in archosaur epidermal appendage development. We propose a model in which branched feather form evolved by repeated, evolutionary re-utilization of a Shh-Bmp2 signaling module in new developmental contexts. Feather animation Quicktime movies can be viewed at http://fallon.anatomy.wisc.edu/feather.html.  相似文献   

15.
A number of homeobox genes have been found to be expressed in skin and its appendages, such as scale and feather, and appear to be candidates for the regulation of the development of these tissues. We report that the proline-rich divergent homeobox gene Hex is expressed during development of chick embryonic skin and its appendages (scale and feather). In situ hybridization analysis revealed that, during development of the skin, a transient expression of the Hex gene was observed. While the expression of Hex in the dermis was closely correlated with proliferation activity of epidermal basal cells, that in the epidermis was related to a suppression of epidermal differentiation. When dermal fibroblasts were transfected with Hex, stimulation of both DNA synthesis and proliferation of the epidermal cells followed by two-fold scale ridge elongation and increase in epidermal area was observed during culture of the skin, whereas epidemal keratinization was not affected. This is the first study to demonstrate that Hex is expressed during development of the skin and its appendages and that its expression in the dermal cells regulates epidermal cell proliferation through epithelial mesenchymal interaction.  相似文献   

16.
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers.  相似文献   

17.
The shape, distribution, and orientation of peridermal cells were examined in the dorsolumbar skin of 712-day chick embryos. Most feather rudiments of middorsal and lateral rows showed a marked cephalocaudal polarity. A similar polarity was found in the prospective rudiments of skin areas lateral to the last-formed row. On the cranial slope and apex of rudiments, cells are convex and predominantly elongated at right angles with respect to the cephalocaudal axis, whereas on the caudal slope, most cells are flat, polygonal, surrounded by a border-line ridge, and oriented predominantly with their long axis parallel to the cephalocaudal axis. The significance of this pattern is discussed in view of the fact that the epidermis is the determinant tissue in feather orientation.  相似文献   

18.
The development of feather buds is a highly ordered process involving epithelial-mesenchymal signalling. Cellular morphology is determined by the actin cytoskeleton, which is controlled by networks of regulators such as the GTPases. EphA4 belongs to a receptor tyrosine kinase family that has been consistently shown to regulate the cytoskeleton via Rho family GTPases in neural development and is expressed in early stages of feather bud development though its role has not been defined. We therefore used an in vitro skin culture system to interfere with EphA4 levels in feather buds using anti-sense oligonucleotides, demonstrating a severe effect on both their number and morphological form. Analysis of the Rho family of GTPases revealed that this effect was mediated by the GTPase RhoB, the expression of which was altered in response to altered levels of EphA4. In addition, the inhibition of RhoB mimicked the effects of reduced EphA4 levels on feather development. Significantly, manipulation of cytoskeletal dynamics revealed that those cells undergoing morphogenetic change regulate the patterning signals responsible for initiating feather development. We propose that this molecular maintenance mechanism between EphA4-RhoB and the actin cytoskeleton converges or coordinates with other morphogenic signalling systems to control feather bud development.  相似文献   

19.
Summary The distribution of glycosaminoglycans (GAGs) was studied in embryonic chick skin, using alcian blue staining with critical electrolyte concentration and glycanase treatment, immunofluorescence and transmission electron microscopy. Light microscopy revealed an uneven distribution of sulphated and non-sulphated GAGs at all stages of feather development. Along the dermal-epidermal junction and throughout the depth of the dermis, staining was stronger inside the feathers than in the interplumar skin. With increasing MgCl2 concentration, the decrease in stain intensity along the dermal-epidermal junction was stronger in interplumar skin than inside feather structures, indicating that sulphated GAGs are more abundant within feathers than in interplumar skin. The same differential sensitivity to electrolyte concentration was noted in the dermis, except at the feather placode stage, when labelling inside the dermal condensation was virtually wiped out at 0.6 M MgCl2 and higher concentrations, whereas it persisted in the surrounding dermis up to 0.8 M MgCl2, indicating that the dermal condensation contains a larger amount of hyaluronate than non-feather-forming dermis. Enzyme treatment of sections with Streptomyces hyaluronidase as compared with those treated with chondroitinase ABC corroborated these findings. Immunofluorescent detection of heparan sulphate proteoglycan revealed the presence of the antigen along the dermal-epidermal junction at all stages of feather development, with peaks of brightness in discrete spots of feather structures. Electron microscopy revealed the presence of ruthenium red and tannic acid positive material in the dermal-epidermal junctional zone and inside the dermis. The density of marked granules was somewhat higher in intraplumar than in interplumar regions. These observations demonstrate that certain sulphated and non-sulphated GAGs are distributed in a microheterogeneous manner, which appears to be related to the morphogenetic events of feather development. They are discussed in view of the possible role these components might play in dermal-epidermal interactions. They strengthen the notion, already gained from previous studies on the localization of interstitial collagens and fibronectin, that extracellular matrix components play an important structural and informative role in organogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号