首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phenotypic revertant with modified beta-subunits of mitochondrial ATPase-ATP synthase has been obtained for the first time by selection from a beta-less mutant of the yeast Schizosaccharomyces pombe. Contrary to the parental mutant, the phenotypic revertant grows on glycerol, has normal respiratory activity and shows immunodetectable beta-subunits. However the kinetic properties of its submitochondrial particles ATPase activity differ markedly from those of the wild strain. The optimal pH is increased by about one unit. The maximal rate of the revertant ATPase activity at pH 8.5 is 4 to 5-fold lower than that of the wild strain, but it can be greatly increased upon addition of bicarbonate whereas the wild strain is completely insensitive to this anion. Furthermore the revertant ATPase activity is much more sensitive to azide inhibition. The results suggest that ADP dissociation is the rate-limiting step of ATP hydrolysis by the revertant.  相似文献   

2.
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.  相似文献   

3.
Mutants of Saccharomyces cerevisiae were isolated which supported two unlinked nuclear mutations conferring thermosensitivity and cold sensitivity respectively, and a mitochondrial one conferring paromomycin sensitivity. Mitochondria isolated from such a mutant exhibited modifications of several phosphate-requiring functions: (a) kinetic parameters of the phosphate dependence of ATP synthesis were modified; (b) in the absence of phosphate the inner mitochondrial membrane exhibited a high proton leakage; (c) mutant mitochondria always exhibited a poor respiratory control and required tenfold more phosphate to reach a maximal state 3 of respiration; (d) phosphate transport, as measured by swelling experiments, was mersalyl-insensitive and, consequently, state 3 of the respiration and ATP synthesis remained less mersalyl-sensitive than in wild-type mitochondria. Analysis of the mitochondrial metabolism of diploid and segregant strains indicates that these modifications are related to the cryosensitive phenotype; however, at present, a cooperative effect of the mitochondrial mutation cannot be eliminated. It is proposed that the phosphate carrier itself or a regulatory element was modified.  相似文献   

4.
Summary We isolated revertants capable of respiration from the respiratory deficient yeast mutant, FF1210-6C/ 170, which displays greatly decreased mitochondrial protein synthesis due to a single base substitution at the penultimate base of the tRNAAsp gene on mitochondrial (mt) DNA. Three classical types of revertant were identified: (1) same-site revertants; (2) intragenic revertants which restore the base pairing in the acceptor stem of the mitochondrial tRNAAsp; and (3) extragenic suppressors located in nuclear DNA. In addition a fourth type of revertant was identified in which the mutant tRNAAsp is amplified due to the maintenance of both the original mutant mtDNA and a modified form of the mutant mtDNA in which only a small region around the tRNAAsp gene is retained and amplified. The latter form resembles the mtDNA in vegetative petite (rho -) strains which normally segregates rapidly from the wild-type mtDNA. Each revertant type was characterized genetically and by both DNA sequence analysis of the mitochondrial tRNAAsp gene and analysis of the quantity and size of RNA containing the tRNAAsp sequence. These results indicate that the mitochondrial tRNAAsp of the mutant retains a low level of activity and that the presence of the terminal base pair in tRNAAsp is a determinant of both tRNAAsp function and the maintenance of wild-type levels of tRNAAsp.  相似文献   

5.
Purine deoxyribonucleotides required for mitochondrial DNA replication are either imported from the cytosol or derived from phosphorylation of deoxyadenosine or deoxyguanosine catalyzed by mitochondrial deoxyguanosine kinase (DGUOK). DGUOK deficiency has been linked to mitochondrial DNA depletion syndromes suggesting an important role for this enzyme in dNTP supply. We have generated HeLa cell lines with 20-30% decreased levels of DGUOK mRNA by the expression of small interfering RNAs directed towards the DGUOK mRNA. The cells with decreased expression of the enzyme showed similar levels of mtDNA as control cells when grown exponentially in culture. However, mtDNA levels rapidly decreased in the cells when cell cycle arrest was induced by serum starvation. DNA incorporation of 9-beta-d-arabino-furanosylguanine (araG) was lower in the cells with decreased deoxyguanosine kinase expression, but the total rate of araG phosphorylation was increased in the cells. The increase in araG phosphorylation was shown to be due to increased expression of deoxycytidine kinase. In summary, our findings show that DGUOK is required for mitochondrial DNA replication in resting cells and that small changes in expression of this enzyme may cause mitochondrial DNA depletion. Our data also suggest that alterations in the expression level of DGUOK may induce compensatory changes in the expression of other nucleoside kinases.  相似文献   

6.
G Barja  A Herrero 《FASEB journal》2000,14(2):312-318
DNA damage is considered of paramount importance in aging. Among causes of this damage, free radical attack, particularly from mitochondrial origin, is receiving special attention. If oxidative damage to DNA is involved in aging, long-lived animals (which age slowly) should show lower levels of markers of this kind of damage than short-lived ones. However, this possibility has not heretofore been investigated. In this study, steady-state levels of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) referred to deoxyguanosine (dG) were measured by high performance liquid chromatography (HPLC) in the mitochondrial (mtDNA) and nuclear (nDNA) DNA from the heart of eight and the brain of six mammalian species ranging in maximum life span (MLSP) from 3.5 to 46 years. Exactly the same digestion of DNA to deoxynucleosides and HPLC protocols was used for mtDNA and nDNA. Significantly higher (three- to ninefold) 8-oxodG/dG values were found in mtDNA than in nDNA in all the species studied in both tissues. 8-oxodG/dG in nDNA did not correlate with MLSP across species either in the heart (r=-0.68; P<0.06) or brain (r = 0.53; P<0.27). However, 8-oxodG/dG in mtDNA was inversely correlated with MLSP both in heart (r=-0.92; P<0.001) and brain (r=-0.88; P<0.016) tissues following the power function y = a(.)x(b), where y is 8-oxodG/dG and x is the MLSP. This agrees with the consistent observation that mitochondrial free radical generation is also lower in long-lived than in short-lived species. The results obtained agree with the notion that oxygen radicals of mitochondrial origin oxidatively damage mtDNA in a way related to the aging rate of each species.-Barja, G., Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.  相似文献   

7.
We have isolated a thermosensitive mutant which is transformed into a population of cells devoid of mitochondrial DNA (rho 0 cells) at 35 degrees C and is deficient in mitochondrial (mt) DNA polymerase activity. A single recessive nuclear mutation (mip1) is responsible for rho 0 phenotype and mtDNA polymerase deficiency in vitro. At 25 degrees C (or 30 degrees C) a dominant suppressor mutation (SUP) masks the deficiency in vivo. The meiotic segregants (mip1 sup) which do not harbor the suppressor have a rho 0 phenotype both at 25 and 35 degrees C. They have no mtDNA polymerase activity, in contrast with MIP rho 0 mutants of mitochondrial inheritance which do exhibit mtDNA polymerase activity. In the thermosensitive mutant (mip1 SUP), the replication of mtDNA observed in vivo at 30 degrees C is completely abolished at 35 degrees C. In the meiotic segregants (mip1 sup), no mtDNA replication takes place at 30 and 35 degrees C. The synthesis of nuclear DNA is not affected. DNA polymerases may have replicative and/or repair activity. There is no evidence that mip mutants are deficient in mtDNA repair. In contrast the MIP gene product is strictly required for the replication of mtDNA and for the expression of the mtDNA polymerase activity. This enzyme might be the replicase of mtDNA.  相似文献   

8.
Previous work from this Laboratory (Szkopińska et al., 1988, Arch. Biochem. Biophys., 266, 124-131) indicated that CTP is a phosphate donor for the synthesis of phosphatidic acid and dolichyl phosphates. The elucidation of the role of mitochondrial membranes and mitochondrial proteins (isolation of rho- mutant) as well as specific detergents and sterols has been the aim of this work.  相似文献   

9.
L S Lee  Y c Cheng 《Biochemistry》1976,15(17):3686-3690
Cytoplasmic and mitochondrial deoxythymidine kinase isozymes derived from the blast cells of acute myelocytic leukemia differ in their substrate specificity and kinetic behavior. These enzymes require divalent cations for their activity. The data suggest that the major role of idvalent cations is to chelate with ATP; the complex thus formed serves as the phosphate donor for the reaction. The activity of various triphosphate nucleosides as a phosphate donor for cytoplasmic deoxythymidine kinase is as follows: ATP = dATP greater than ara-ATP greater than GTP greater than CTP greater than dGTP = dCTP greater than dUTP, whereas for mitochondrial deoxythymidine kinase, the order of activity is ATP greater than CTP greater than UTP = dATP greater than ara-ATP greater than dGTP = dCTP greater than dUTP. Neither IdUTP nor dTTP could serve as a phosphate donor in the reaction catalyzed by either isozyme. From the many pyrimidine analogues tested for their binding affinity to each of these isozymes, I-dUrd and Br-dUrd had high good affinity which was equivalent to that of deoxythymidine. 5-Allyl-dUrd, 5-ethyl-dUrd, and 5-propyl-dUrd were only weakly bound to each isozyme. 5-I-dCyd, 5-Br-dCyd, dCyd, and 5-vinyl-dUrd were tightly bound to mitochondrial deoxythymidine kinase but not to the cytoplasmic isozyme. dTTP and I-dUTP are potent inhibitors of the reaction catalyzed by both isozymes. In contrast, dCTP and ara-CTP are potent inhibitors only of the mitochondrial isozyme, but not of the cytoplasmic isozyme. ATP-MG2+ acts as a sigmoidal substrate of the cytoplasmic isozyme with a"Km" of 0.22 mM, and as a regular substrate of the mitochondrial isozyme with a Km of 0.1 mM. Deoxythymidine acts as a regular substrate for both cytoplasmic and mitochondrial isozyme with a Km of 2.6 and 5.2 muM, respectively. Initial velocity as well as product inhibition studies suggest that the cytoplasmic isozyme catalyzes the reaction via a "sequential" mechanism. In contrast, mitochondrial deoxythymidine kinase catalyzes the reaction via a "ping-pong" mechanism.  相似文献   

10.
HeLa(BU25), a mutant subline of HeLa S3 cells, contains mitochondrial thymidine (dT) kinase, despite a marked deficiency in the dT kinase activity of the “cytosol” (high-speed supernatant) cell fraction. The HeLa(BU25) mitochondrial dT kinase differs from the “cytosol” enzyme of parental HeLa S3 cells in sedimentation coefficient, ability to utilize ribonucleoside 5′-triphosphates other than ATP as phosphate donors, sensitivity to inhibition by dCTP, and in disc polyacrylamide gel electrophoretic (disc PAGE) patterns. Two dT kinase activities [relative mobilities (Rm) of 0.4 and 0.6–0.7] were detected after disc PAGE of HeLa(BU25) mitochondrial extracts and both activities migrated more rapidly than the typical cytosol enzyme (Rm = 0.2) of dT kinase-positive human cells. The 0.6 to 0.7-Rm dT kinase of HeLa(BU25) mitochondria, but not the 0.4-Rm activity, utilized GTP and UTP, as well as ATP, as phosphate donors. HeLa S3 mitochondrial fractions contained the 0.6–0.7 Rm and the 0.4-Rm activities, and in addition, a “cytosol-like” 0.2-Rm activity. The 0.6 to 0.7-Rm dT kinase of HeLa S3 mitochondria utilized either UTP or ATP as phosphate donors, but the 0.4- and 0.2-Rm dT kinases utilized only ATP. Similarly, the HeLa S3 cytosol dT kinase efficiently utilized ATP, but not UTP, as a phosphate donor.  相似文献   

11.
dBU-resistant mouse lines lack detectable dT kinase activity in the high speed supernatant (cytosol) cell fraction. However, they contain a mitochondrial dT kinase, which sediments more slowly in glycerol gradients than the cytosol enzyme of parental mouse lines, exhibits a disc PAGE mobility relative to the tracking dye (Rm) of about 0.7–0.8, and utilizes ATP, UTP, GTP, and CTP as phosphate donors. The mitochondrial fraction of parental cells also contains this 0.7–0.8 Rm activity and, in addition, a minor dT kinase activity which migrates faster than the cytosol enzyme, but utilizes only ATP as phosphate donor. The cytosol dT kinase of parental mouse lines exhibits an Rm of about 0.2–0.3 and utilizes only ATP as phosphate donor.  相似文献   

12.
Atp6p is an essential subunit of the ATP synthase proton translocating domain, which is encoded by the mitochondrial DNA (mtDNA) in yeast. We have replaced the coding sequence of Atp6p gene with the non-respiratory genetic marker ARG8m. Due to the presence of ARG8m, accumulation of rho-/rho0 petites issued from large deletions in mtDNA could be restricted to 20-30% by growing the atp6 mutant in media lacking arginine. This moderate mtDNA instability created favorable conditions to investigate the consequences of a specific lack in Atp6p. Interestingly, in addition to the expected loss of ATP synthase activity, the cytochrome c oxidase respiratory enzyme steady-state level was found to be extremely low (<5%) in the atp6 mutant. We show that the cytochrome c oxidase-poor accumulation was caused by a failure in the synthesis of one of its mtDNA-encoded subunits, Cox1p, indicating that, in yeast mitochondria, Cox1p synthesis is a key target for cytochrome c oxidase abundance regulation in relation to the ATP synthase activity. We provide direct evidence showing that in the absence of Atp6p the remaining subunits of the ATP synthase can still assemble. Mitochondrial cristae were detected in the atp6 mutant, showing that neither Atp6p nor the ATP synthase activity is critical for their formation. However, the atp6 mutant exhibited unusual mitochondrial structure and distribution anomalies, presumably caused by a strong delay in inner membrane fusion.  相似文献   

13.
The levels of mitochondrial DNA 4977 bp deletion (mtDNA4977) and mitochondrial DNA 8'-hydroxy-2'-deoxyguanosine (OH8dG) were determined in the same samples from two brain areas of healthy subjects and Alzheimer's disease (AD) patients. A positive correlation between the age-related increases of mtDNA4977 and of OH8dG levels was found in the brain of healthy individuals. On the contrary, in both brain areas of AD patients, mtDNA4977 levels were very low in the presence of high OH8dG amounts. These results might be explained assuming that the increase of OH8dG above a threshold level, as in AD patients, implies consequences for mtDNA replication and neuronal cell survival.  相似文献   

14.
A 15-base pair, in-frame, deletion (9480del15) in the mitochondrial DNA (mtDNA)-encoded cytochrome c oxidase subunit III (COX III) gene was identified previously in a patient with recurrent episodes of myoglobinuria and an isolated COX deficiency. Transmitochondrial cell lines harboring 0, 97, and 100% of the 9480del15 deletion were created by fusing human cells lacking mtDNA (rho(0) cells) with platelet and lymphocyte fractions isolated from the patient. The COX III gene mutation resulted in a severe respiratory chain defect in all mutant cell lines. Cells homoplasmic for the mutation had no detectable COX activity or respiratory ATP synthesis, and required uridine and pyruvate supplementation for growth, a phenotype similar to rho(0) cells. The cells with 97% mutated mtDNA exhibited severe reductions in both COX activity (6% of wild-type levels) and rates of ATP synthesis (9% of wild-type). The COX III polypeptide in the mutant cells, although translated at rates similar to wild-type, had reduced stability. There was no evidence for assembly of COX I, COX II, or COX III subunits in a multisubunit complex in cells homoplasmic for the mutation, thus indicating that there was no stable assembly of COX I with COX II in the absence of wild-type COX III. In contrast, the COX I and COX II subunits were assembled in cells with 97% mutated mtDNA.  相似文献   

15.
Mutations in mitochondrial DNA (mtDNA) cause impairment of ATP synthesis. It was hypothesized that high-energy compounds, such as ATP, are compartmentalized within cells and that different cell functions are sustained by different pools of ATP, some deriving from mitochondrial oxidative phosphorylation (OXPHOS) and others from glycolysis. Therefore, an OXPHOS dysfunction may affect different cell compartments to different extents. To address this issue, we have used recombinant forms of the ATP reporter luciferase localized in different cell compartments- the cytosol, the subplasma membrane region, the mitochondrial matrix, and the nucleus- of cells containing either wild-type or mutant mtDNA. We found that with glycolytic substrates, both wild-type and mutant cells were able to maintain adequate ATP supplies in all compartments. Conversely, with the OXPHOS substrate pyruvate ATP levels collapsed in all cell compartments of mutant cells. In wild-type cells normal levels of ATP were maintained with pyruvate in the cytosol and in the subplasma membrane region, but, surprisingly, they were reduced in the mitochondria and, to a greater extent, in the nucleus. The severe decrease in nuclear ATP content under "OXPHOS-only" conditions implies that depletion of nuclear ATP plays an important, and hitherto unappreciated, role in patients with mitochondrial dysfunction.  相似文献   

16.
As typical mitochondrial myopathy has been reported to be expressed among many patients with AIDS treated with long-term azidothymidine (AZT) therapy, we examined changes in mouse liver mitochondrial DNA (mtDNA) after 4-week administration of AZT. Even below 1/10th the dose given to the patients (AZT, 1 mg/kg/day), 25% of the total deoxyguanosine (dG) was converted to be 8-hydroxy-deoxyguanosine (8-OH-dG). 38% of the total dG was converted to 8-OH-dG with AZT 5 mg/kg/day. In vitro, the conversion of dG to 8-OH-dG was demonstrated by incubating mtDNA in the oxygen radical producing system containing NADH and KCN treated mitochondrial inner membrane. Thus it is concluded that, by lack of repairing system, damaged mtDNA with AZT results in impaired mitochondrial respiratory chain causing oxygen radicals which are responsible for 8-OH-dG formation. These results suggest that the oxygen damage of mtDNA is the primary cause of mitochondrial myopathy with AZT therapy.  相似文献   

17.
The m.3243A>G variant in the mitochondrial tRNA(Leu(UUR)) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of l-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of l-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and l-arginine therapy may constitute promising therapeutic strategies against MELAS.  相似文献   

18.
Maintenance of mitochondrial DNA (mtDNA) requires the concerted activity of several nuclear-encoded factors that participate in its replication, being part of the mitochondrial replisome or ensuring the balanced supply of dNTPs to mitochondria. In the past decade, a growing number of syndromes associated with dysfunction due to tissue-specific depletion of mtDNA (MDS) have been reported. This article reviews the current knowledge of the genes responsible for these disorders, the impact of different mutations in the epidemiology of MDS and their role in the pathogenic mechanisms underlying the different clinical presentations.  相似文献   

19.
The restriction endonucleaseSmaI has been used for the diagnosis of neurogenic muscle weakness, ataxia and retinitis pigmentosa disease or Leigh's disease, caused by the Mt8993TG mutation which results in a Leu156Arg replacement that blocks proton translocation activity of subunit a of F0F1-ATPase. Our ultimate goal is to applySmaI to gene therapy for this disease, because the mutant mitochondrial DNA (mtDNA) coexists with the wild-type mtDNA (heteroplasmy), and because only the mutant mtDNA, but not the wild-type mtDNA, is selectively restricted by the enzyme. For this purpose, we transiently expressed theSmaI gene fused to a mitochondrial targeting sequence in cybrids carrying the mutant mtDNA. Here, we demonstrate that mitochondria targeted by theSmaI enzyme showed specific elimination of the mutant mtDNA. This elimination was followed with repopulation by the wild-type mtDNA, resulting in restoration of both the normal intracellular ATP level and normal mitochondrial membrane potential. Furthermore, in vivo electroporation of the plasmids expressing mitochondrion-targetedEcoRI induced a decrease in cytochromec oxidase activity in hamster skeletal muscles while causing no degenerative changes in nuclei. Delivery of restriction enzymes into mitochondria is a novel strategy for gene therapy of a special form of mitochondrial diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号