首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are the core machinery of membrane fusion. Vesicular SNAREs (v-SNAREs) interact with their target SNAREs (t-SNAREs) to form SNARE complexes which mediate membrane fusion. Here we review the basic properties and functions of the v-SNARE TI-VAMP/VAMP7 (Tetanus neurotoxin insensitive-vesicle associated membrane protein). TI-VAMP interacts with its t-SNARE partners, particularly plasmalemmal syntaxins, to mediate membrane fusion and with several regulatory proteins especially via its amino-terminal regulatory Longin domain. Partners include AP-3, Hrb/(Human immunodeficiency virus Rev binding) protein, and Varp (Vps9 domain and ankyrin repeats containing protein) and regulate TI-VAMP’s function and targeting. TI-VAMP is involved both in secretory and endocytic pathways which mediate neurite outgrowth and synaptic transmission, plasma membrane remodeling and lysosomal secretion.  相似文献   

2.
3.
The biogenesis and maintenance of asymmetry is crucial to many cellular functions including absorption and secretion, signalling, development and morphogenesis. Here we have directly visualized the segregation and trafficking of apical (glycosyl phosphatidyl inositol-anchored) and basolateral (vesicular stomatitis virus glycoprotein) cargo in living cells using multicolour imaging of green fluorescent protein variants. Apical and basolateral cargo segregate progressively into large domains in Golgi/trans-Golgi network structures, exclude resident proteins, and exit in separate transport containers. These remain distinct and do not merge with endocytic structures suggesting that lateral segregation in the trans-Golgi network is the primary sorting event. Fusion with the plasma membrane was detected by total internal reflection microscopy and reveals differences between apical and basolateral carriers as well as new 'hot spots' for exocytosis.  相似文献   

4.
5.
A mutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype "chocolate" (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38(G19V) is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles.  相似文献   

6.
In developing Drosophila photoreceptors, rhodopsin is trafficked to the rhabdomere, a specialized domain within the apical membrane surface. Rab11, a small GTPase implicated in membrane traffic, immunolocalizes to the trans-Golgi network, cytoplasmic vesicles and tubules, and the base of rhabdomeres. One hour after release from the endoplasmic reticulum, rhodopsin colocalizes with Rab11 in vesicles at the base of the rhabdomere. When Rab11 activity is reduced by three different genetic procedures, rhabdomere morphogenesis is inhibited and rhodopsin-bearing vesicles proliferate within the cytosol. Rab11 activity is also essential for development of MVB endosomal compartments; this is probably a secondary consequence of impaired rhabdomere development. Furthermore, Rab11 is required for transport of TRP, another rhabdomeric protein, and for development of specialized membrane structures within Garland cells. These results establish a role for Rab11 in the post-Golgi transport of rhodopsin and of other proteins to the rhabdomeric membranes of photoreceptors, and in analogous transport processes in other cells.  相似文献   

7.
A novel peripheral membrane protein (2c18) that interacts directly with the gamma 'ear' domain of the adaptor protein complex 1 (AP-1) in vitro and in vivo is described. Ultrastructural analysis demonstrates a colocalization of 2c18 and gamma1-adaptin at the trans-Golgi network (TGN) and on vesicular profiles. Overexpression of 2c18 increases the fraction of membrane-bound gamma1-adaptin and inhibits its release from membranes in response to brefeldin A. Knockdown of 2c18 reduces the steady-state levels of gamma1-adaptin on membranes. Overexpression or downregulation of 2c18 leads to an increased secretion of the lysosomal hydrolase cathepsin D, which is sorted by the mannose-6-phosphate receptor at the TGN, which itself involves AP-1 function for trafficking between the TGN and endosomes. This suggests that the direct interaction of 2c18 and gamma1-adaptin is crucial for membrane association and thus the function of the AP-1 complex in living cells. We propose to name this protein gamma-BAR.  相似文献   

8.
Coupling of post-Golgi and endocytic membrane transport ensures that the flow of materials to/from the plasma membrane (PM) is properly balanced. The mechanisms underlying the coordinated trafficking of PM proteins in plants, however, are not well understood. In plant cells, clathrin and its adaptor protein complexes, AP-2 and the TPLATE complex (TPC) at the PM, and AP-1 at the trans-Golgi network/early endosome (TGN/EE), function in clathrin-mediated endocytosis (CME) and post-Golgi trafficking. Here, we utilized mutants with defects in clathrin-dependent post-Golgi trafficking and CME, in combination with other cytological and pharmacological approaches, to further investigate the machinery behind the coordination of protein delivery and recycling to/from the TGN/EE and PM in Arabidopsis (Arabidopsis thaliana) root cells. In mutants with defective AP-2-/TPC-dependent CME, we determined that clathrin and AP-1 recruitment to the TGN/EE as well as exocytosis are significantly impaired. Likewise, defects in AP-1-dependent post-Golgi trafficking and pharmacological inhibition of exocytosis resulted in the reduced association of clathrin and AP-2/TPC subunits with the PM and a reduction in the internalization of cargoes via CME. Together, these results suggest that post-Golgi trafficking and CME are coupled via modulation of clathrin and adaptor protein complex recruitment to the TGN/EE and PM.  相似文献   

9.
Localization of transferrin and transferrin receptors in rat testes   总被引:2,自引:0,他引:2  
One of the major proteins secreted by rat Sertoli cells in culture is a transferrin-like protein (Skinner and Griswold, 1980). The purpose of this study was to quantitate the amount of testicular transferrin in fluids isolated from the testis by the use of a radioimmunoassay and to determine the location of transferrin and transferrin receptors in the testis by indirect immunofluorescence. Seminiferous tubule fluid, rete testis fluid, and testicular lymph were collected from rat testes and were found to contain 141 micrograms, 47 micrograms and 3.7 mg transferrin per ml of fluid, respectively. Serum was found to contain 3.7 mg/ml transferrin. Paraffin sections of rat testis were incubated with rabbit anti-rat transferrin, biotinylated goat anti-rabbit and fluorescein-conjugated avidin. Immunoreactive transferrin was thus localized on the proacrosome and nuclear cap of developing spermatids. Late spermatids showed transferrin over the entire region of the head but mature testicular spermatozoa exhibited little fluorescence. The interstitial tissue between seminiferous tubules fluoresced brightly, indicating a large amount of transferrin in this area. By pretreating sections with rat transferrin, the receptor for the protein was localized on and in spermatocytes and early round spermatids. Dividing germ cells were brightly fluorescent.  相似文献   

10.
The ATP binding cassette, class A (ABCA) proteins are homologous polytopic transmembrane transporters that function as lipid pumps at distinct subcellular sites in a variety of cells. Located within the N terminus of these transporters, there exists a highly conserved xLxxKN motif of unknown function. To define its role, human ABCA3 was employed as a primary model representing ABCA transporters, while mouse ABCA1 was utilized to support major findings. Transfection studies showed colocalization of both transporters with surfactant protein C (SP-C), a marker peptide for successful protein targeting to lysosomal-like organelles. In contrast, alanine mutation of xLxxKN resulted in endoplasmic reticulum retention. As proof of principle, swapping xLxxKN for the known lysosomal targeting motif of SP-C resulted in post-Golgi targeting of the SP-C chimera. However, these products failed to reach their terminal processing compartments, suggesting that the xLxxKN motif only serves as a Golgi exit signal. We propose a model whereby an N-terminal signal sequence, xLxxKN, directs ABCA transporters to a post-Golgi vesicular sorting station where additional signals may be required for selective delivery of individual transporters to final subcellular destinations.  相似文献   

11.
We investigated the subcellular localization of two endothelin receptors (ET(A)R and ET(B)R). To visualize these receptors directly, the C terminus of each receptor was fused to the N terminus of enhanced green fluorescent protein (designated as ETR-EGFP). When transiently expressed in various mammalian cell lines, ET(A)R-EGFP was predominantly localized on the plasma membrane. By contrast, ET(B)R-EGFP was, independent of ligand stimulation, predominantly localized on the intracellular vesicular structures containing Lamp-1. Immunoblot analyses revealed that at steady state ET(B)R-EGFP was highly degraded, and its degradation was inhibited by bafilomycin A(1). Antibody uptake experiments suggested that the ET(B)R-EGFP molecules were internalized from the plasma membrane. It is therefore likely that ET(B)R is first transported to the plasma membrane and then internalized, irrespective of ligand stimulation, to lysosomes where it undergoes proteolytic degradation. Exchanging the C-terminal cytoplasmic tails of the two ETRs revealed that the cytoplasmic tail is responsible for both the intracellular localization and the degradation of the receptors. Deletion of the extreme C-terminal 35 amino acids from both receptors allowed the receptor proteins to localize predominantly in the intracellular vesicles and to degrade. These observations indicate that the cytoplasmic tail of ET(A)R determines its plasma membrane localization. Stimulation with endothelin-1 increased the amount of intact ETR-EGFP fusion proteins without increasing their de novo synthesis, suggesting that binding of endothelin-1 stabilizes the ETRs.  相似文献   

12.
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.  相似文献   

13.
Transferrin and specific transferrin receptors are demonstrated on the microvillous surface of syncytiotrophoblast in human immature and term placentae by immuno histological techniques with the use of light and electron microscopy. That the distribution of transferrin is limited to the materno-foetal interface supports the hypothesis that binding of maternal transferrin to trophoblast receptors is involved in the process of iron transport to the foetus. Parallel studies with baboon placentae demonstrate the presence of trophoblast receptors which bind both baboon and human transferrin, thereby putting forward an experimental model which might be used to test the biological significance of placental transferrin receptors in primates. In addition, investigation of a large number of human cell lines shows that many transformed cells, but no normal cells (such as blood lymphocytes) or cells from primary culture (such as neonatal foreskin fibroblasts), possess the ability to bind transferrin to their membranes. These findings suggest that transferrin receptors may play important biological roles in addition to that of iron transport from mother to foetus. One such role could be the limitation of iron in intervillous spaces, thus depriving iron-requiring microorganisms of iron, hence serving as a non-specific factor of resistance for placentae. Another role for foetal transferrin receptors on trophoblasts could be to bind maternal transferrin at the materno-foetal interface, thus frustrating maternal immunosurveillance. This is similar to a mechahism used by schistosomes in the host-parasite relation where host proteins are bound by the parasite to escape immunological recognition. The presence of transferrin receptors on transformed cells suggests that this mechanism might also be employed by tumour cells. Finally, in view of previous studies which show that transferrin is required by stimulated lymphocytes to pass from the G1 to the S phase of cellular replication, it is proposed that trophoblast transferrin receptors could limit the amount of transferrin in intervillous spaces and thus impede the proliferation and possible cytotoxicity of maternal activated lymphocytes at the materno-foetal interface.  相似文献   

14.
Regulation of HeLa cell transferrin receptors   总被引:27,自引:0,他引:27  
HeLa cells were found to have a single class of non-interacting receptors specific for transferrin. Both apotransferrin and diferric transferrin competed equally with 125I-diferric transferrin for receptor binding. Transferrin binding was temperature-dependent and reversible. Binding of transferrin to cells exhibited a KD of 27 nM with a maximum binding capacity of 1.8-3.7 x 10(6) molecules/cell. Cells grown in the presence of diferric transferrin or in the presence of ferric ammonium citrate exhibited a concentration- and time-dependent decrease in 125I-diferric transferrin binding. The decrease in binding activity reflected a reduction in receptor number rather than an alteration in ligand receptor affinity. Growth of cells in saturating concentrations of apotransferrin did not cause a decrease in receptor number. When iron-treated cells were removed to media free of ferric ammonium citrate, the receptor number returned to control values by 40 h. When receptors were removed with trypsin, cells grown and maintained in ferric ammonium citrate-supplemented media demonstrated a rate of receptor reappearance 47% that of control cells grown in ferric ammonium citrate-free media. Cells grown in media supplemented with diferric transferrin or ferric ammonium citrate exhibited an increase in cytosolic iron content. The transferrin receptor number returned to normal after cells were removed to unsupplemented media, despite persistent elevation of cytosolic iron content. Increased iron content did not appear to be the sole factor determining receptor number.  相似文献   

15.
The posttranslational regulation of transferrin receptor (TfR1) is largely unknown. We investigated whether iron availability affects TfR1 endocytic cycle and protein stability in HepG2 hepatoma cells exposed to ferric ammonium citrate (FAC). NH4Cl and bafilomycin A1, but not the proteasomal inhibitor MG132, prevented the FAC-mediated decrease in TfR1 protein levels, thus indicating lysosomal involvement. Knockdown experiments showed that TfR1 lysosomal degradation is independent of 1) endocytosis mediated by the clathrin adaptor AP2; 2) Tf, which was suggested to facilitate TfR1 internalization; 3) H-ferritin; and 4) MARCH8, previously implicated in TfR1 degradation. Notably, FAC decreased the number of TfR1 molecules at the cell surface and increased the Tf endocytic rate. Colocalization experiments confirmed that, upon FAC treatment, TfR1 was endocytosed in an AP2- and Tf-independent pathway and trafficked to the lysosome for degradation. This unconventional endocytic regulatory mechanism aimed at reducing surface TfR1 may represent an additional posttranslational control to prevent iron overload. Our results show that iron is a key regulator of the trafficking of TfR1, which has been widely used to study endocytosis, often not considering its function in iron homeostasis.  相似文献   

16.
Friend erythroleukemia cell membrane transferrin receptors   总被引:1,自引:0,他引:1  
We have compared the uptake of transferrin by murine Friend erythroleukemia cells with the uptake of transferrin by murine reticulocytes. Friend cells which had been induced to erythroid differentiation by dimethyl sulfoxide took up transferrin in a manner qualitatively and quantitatively similar to the uptake of transferrin by reticulocytes, while uninduced Friend cells took up only negligible amounts of transferrin. Specific transferrin-binding activity could be demonstrated in detergent extracts of membranes from induced cells and this activity was isolated from membrane extracts by the use of antibody to transferrin. The isolated membrane component(s) with transferrin-binding activity migrated electrophoretically as a single protein on sodium dodecyl sulfate gels and had similar properties to a transferrin-binding protein isolated previously from reticulocytes.  相似文献   

17.
Quiescent lymphocytes express intracellular transferrin receptors   总被引:1,自引:0,他引:1  
Both quiescent and concanavalin A stimulated murine splenic lymphocytes were examined for the expression of surface and intracellular binding sites for the serum glycoprotein transferrin. Transferrin binding activity was observed on the surface of mitogen stimulated cells only. When soluble detergent extracts of both populations were studied, quiescent lymphocytes were shown to contain a significant pool of non-surface exposed, intracellular receptors which was approximately 20% of the total receptor complement of proliferating cells. Because the ratio of surface to intracellular binding sites was dramatically increased following mitogen stimulation, the regulation of transferrin receptor expression during this process may involve a substantial alteration in its subcellular distribution in addition to the well documented increase in number of binding sites.  相似文献   

18.
19.
20.
Expression of transferrin receptors during erythroid maturation   总被引:2,自引:0,他引:2  
A monoclonal antibody, F111/2Dl, produced after immunisation of C3H/He mice with the human erythroleukemia cell line, K562, is described. It detects cell surface determinants of similar distribution to those characterised by the OKT-9 monoclonal antibody, which has been shown to identify the transferrin receptor. The F111/2Dl antibody, as well as OKT-9, has been used to investigate the distribution of transferrin receptors during erythroid maturation in normal bone marrow and peripheral blood, and on the K562 cell line during erythroid differentiation, induced in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号