首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-alpha (TGF-alpha) and its receptor, the epithelial growth factor receptor (EGFR), have been associated with lung remodeling in premature infants with bronchopulmonary dysplasia (BPD). The goal of this study was to target TGF-alpha overexpression to the saccular phase of lung morphogenesis and determine early alterations in gene expression. Conditional lung-specific TGF-alpha bitransgenic mice and single-transgene control mice were generated. TGF-alpha overexpression was induced by doxycycline (Dox) treatment from embryonic day 16.5 (E16.5) to E18.5. After birth, all bitransgenic pups died by postnatal day 7 (P7). Lung histology at E18.5 and P1 showed abnormal lung morphogenesis in bitransgenic mice, characterized by mesenchymal thickening, vascular remodeling, and poor apposition of capillaries to distal air spaces. Surfactant levels (saturated phosphatidylcholine) were not reduced in bitransgenic mice. Microarray analysis was performed after 1 or 2 days of Dox treatment during the saccular (E17.5, E18.5) and alveolar phases (P4, P5) to identify genes induced by EGFR signaling that were shared or unique to each phase. We found 196 genes to be altered (>1.5-fold change; P < 0.01 for at least 2 time points), with only 32% similarly altered in both saccular and alveolar phases. Western blot analysis and immunostaining showed that five genes selected from the microarrays (egr-1, SP-B, SP-D, S100A4, and pleiotrophin) were also increased at the protein level. Pathological changes in TGF-alpha-overexpressing mice bore similarities to premature infants born in the saccular phase who develop BPD, including remodeling of the distal lung septae and arteries.  相似文献   

2.
Neuregulin is an important growth factor in fetal surfactant synthesis, and downregulation of its receptor, ErbB4, impairs fetal surfactant synthesis. We hypothesized that pulmonary ErbB4 deletion will affect the developing lung leading to an abnormal postnatal lung function. ErbB4-deleted lungs of 11- to 14-wk-old adult HER4heart mice, rescued from their lethal cardiac defects, were studied for the effect on lung function, alveolarization, and the surfactant system. ErbB4 deletion impairs lung function and structure in HER4heart mice resulting in a hyperreactive airway system and alveolar simplification, as seen in preterm infants with bronchopulmonary dysplasia. It also leads to a downregulation of surfactant protein D expression and an underlying chronic inflammation in these lungs. Our findings suggest that this animal model could be used to further study the pathogenesis of bronchopulmonary dysplasia and might help design protective interventions.  相似文献   

3.
In bronchopulmonary dysplasia (BPD), alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF)-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.  相似文献   

4.
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease and major risk factor for severe respiratory syncytial virus (RSV) infection among preterm infants. The Toll-like receptor 4 (TLR4) is involved in oxidative injury responses in the lungs. Two non-synonymous single nucleotide polymorphisms in the TLR4 gene have been associated with RSV infection in children. However, it is unclear to what extent this association is confounded by BPD or prematurity. In this study, we analyzed two population-based cohorts of preterm infants at risk for BPD as well as ethnicity-matched infants born at term, to test whether the TLR4 polymorphisms Asp299Gly (rs4986790) and Thr399Ile (rs4986791) are independently associated with BPD or premature birth. In a Canadian cohort (n = 269) composed of a majority of Caucasian preterm infants (BPD incidence of 38%), the TLR4-299 heterozygous genotype was significantly under-represented in infants without BPD (1.6% of infants versus 12% in infants with severe BPD) after adjusting for twins, ethnicity, gestational age, birth weight and gender (p = 0.014). This association was not replicated in a Finnish cohort (n = 434) of premature singletons or first-born siblings of Caucasian descent, although the incidence of BPD was substantially lower in this latter population (15%). We did not detect a significant association (>2-fold) between TLR4 genotypes and prematurity (p>0.05). We conclude that these TLR4 genotypes may have, at best, a modest influence on BPD severity in some populations of high-risk preterm infants. Further studies are warranted to clarify how clinical heterogeneity may impact genetic susceptibility to BPD.  相似文献   

5.
Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear. NF-κB activation inhibits expression of the critical morphogen FGF-10. Here, we show that interactions between the RELA subunit of NF-κB and SP3 suppress SP1-mediated FGF-10 expression. SP3 co-expression reduced SP1-mediated Fgf-10 promoter activity, suggesting antagonistic interactions between SP1 and SP3. Chromatin immunoprecipitation of LPS-treated primary mouse fetal lung mesenchymal cells detected increased interactions between SP3, RELA, and the Fgf-10 promoter. Expression of a constitutively active IκB kinase β mutant not only decreased Fgf-10 promoter activity but also increased RELA-SP3 nuclear interactions. Expression of a dominant-negative IκB, which blocks NF-κB nuclear translocation, prevented inhibition of FGF-10 by SP3. The inhibitory functions of SP3 required sequences located in the N-terminal region of the protein. These data suggested that inhibition of FGF-10 by inflammatory signaling involves the NF-κB-dependent interactions between RELA, SP3, and the Fgf-10 promoter. NF-κB activation may therefore lead to reduced gene expression by recruiting inhibitory factors to specific gene promoters following exposure to inflammatory stimuli.  相似文献   

6.
Oxidative stress is an important factor in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants characterized by arrested alveolar and vascular development of the immature lung. We investigated differential gene expression with DNA microarray analysis in premature rat lungs exposed to prolonged hyperoxia during the saccular stage of development, which closely resembles the development of the lungs of premature infants receiving neonatal intensive care. Expression profiles were largely confirmed by real-time RT-PCR (27 genes) and in line with histopathology and fibrin deposition studied by Western blotting. Oxidative stress affected a complex orchestra of genes involved in inflammation, coagulation, fibrinolysis, extracellular matrix turnover, cell cycle, signal transduction, and alveolar enlargement and explains, at least in part, the pathological alterations that occur in lungs developing BPD. Exciting findings were the magnitude of fibrin deposition; the upregulation of chemokine-induced neutrophilic chemoattractant-1 (CINC-1), monocyte chemoattractant protein-1 (MCP-1), amphiregulin, plasminogen activator inhibitor-1 (PAI-1), secretory leukocyte proteinase inhibitor (SLPI), matrix metalloproteinase-12 (MMP12), p21, metallothionein, and heme oxygenase (HO); and the downregulation of fibroblast growth factor receptor-4 (FGFR4) and vascular endothelial growth factor (VEGF) receptor-2 (Flk-1). These findings are not only of fundamental importance in the understanding of the pathophysiology of BPD, but also essential for the development of new therapeutic strategies.  相似文献   

7.
8.
Hemorrhagic shock renders patients susceptible to the development of acute lung injury in response to a second inflammatory stimulus by as yet unclear mechanisms. We investigated the role of neutrophils (PMN) in alveolar macrophage (AMphi) priming, specifically, the role in mediating Toll-like receptor (TLR)4 and TLR2 cross talk in AMphi. Using a mouse model of hemorrhagic shock followed by intratracheal administration of LPS, we explored a novel function of shock-activated PMN in the mechanism of TLR2 upregulation induced by LPS-TLR4 signaling in AMphi. We showed that antecedent hemorrhagic shock enhanced LPS-induced TLR2 upregulation in AMphi. In neutropenic mice subjected to shock, the LPS-induced TLR2 expression was significantly reduced, and the response was restored upon repletion with PMN obtained from shock-resuscitated mice but not by PMN from sham-operated mice. These findings were recapitulated in mouse AMphi cocultured with PMN. The enhanced TLR2 upregulation in AMphi augmented the expression of macrophage inflammatory protein-2, TNF-alpha, and macrophage migration inhibitory factor in the AMphi in response to sequential challenges of LPS and peptidoglycan, a prototypical TLR2 ligand, which physiologically associated with amplified AMphi-induced PMN migration into air pouch and lung alveoli. Thus TLR2 expression in AMphi, signaled by TLR4 and regulated by shock-activated PMN, is an important positive-feedback mechanism responsible for shock-primed PMN infiltration into the lung after primary PMN sequestration.  相似文献   

9.

Rationale

The chemokine interleukin-8 is implicated in the development of bronchopulmonary dysplasia in preterm infants. The 77-amino acid isoform of interleukin-8 (interleukin-877) is a less potent chemoattractant than other shorter isoforms. Although interleukin-877 is abundant in the preterm circulation, its regulation in the preterm lung is unknown.

Objectives

To study expression and processing of pulmonary interleukin-877 in preterm infants who did and did not develop bronchopulmonary dysplasia.

Methods

Total interleukin-8 and interleukin-877 were measured in bronchoalveolar lavage fluid from preterm infants by immunoassay. Neutrophil serine proteases were used to assess processing. Neutrophil chemotaxis assays and degranulation of neutrophil matrix metalloproteinase-9 were used to assess interleukin-8 function.

Main Results

Peak total interleukin-8 and interleukin-877 concentrations were increased in infants who developed bronchopulmonary dysplasia compared to those who did not. Shorter forms of interleukin-8 predominated in the preterm lung (96.3% No-bronchopulmonary dysplasia vs 97.1% bronchopulmonary dysplasia, p>0.05). Preterm bronchoalveolar lavage fluid significantly converted exogenously added interleukin-877 to shorter isoforms (p<0.001). Conversion was greater in bronchopulmonary dysplasia infants (p<0.05). This conversion was inhibited by α-1 antitrypsin and antithrombin III (p<0.01). Purified neutrophil serine proteases efficiently converted interleukin-877 to shorter isoforms in a time- and dose-dependent fashion; shorter interleukin-8 isoforms were primarily responsible for neutrophil chemotaxis (p<0.001). Conversion by proteinase-3 resulted in significantly increased interleukin-8 activity in vitro (p<0.01).

Conclusions

Shorter, potent, isoforms interleukin-8 predominate in the preterm lung, and are increased in infants developing bronchopulmonary dysplasia, due to conversion of interleukin-877 by neutrophil serine proteases and thrombin. Processing of interleukin-8 provides an attractive therapeutic target to prevent development of bronchopulmonary dysplasia.  相似文献   

10.
Bacterial diseases, especially those of the lung caused by Gram-negative bacteria, inflict significant economic loss associated with mortality and morbidity in domestic animals. Toll-like receptor 4 (TLR4) has recently been recognized as a major receptor for cellular interactions with lipopolysaccharides derived from Gram-negative bacteria. However, there are no data on the expression of TLR4 in various organs of domestic animals. We performed immunohistochemistry and immuno-gold electron microscopy to localize TLR4 in lung and seven other organs from normal pig, dog and calf (n=2 each) and in inflamed lungs from calves (n=4) challenged with Mannheimia hemolytica. The data show TLR4 in macrophages in lung, small intestine, liver and spleen in all the species and pulmonary intravascular macrophages in calves and pigs. Epithelium in lung, small intestine, cornea and convoluted and straight renal tubules was stained for TLR4. Vascular endothelium of large blood vessels only in lungs and skin was positive, and skeletal muscles were negative for TLR4. In inflamed lungs, airway epithelium showed reduced staining for TLR4 while staining in macrophages remained unaltered. These are the first immunocytochemical data on TLR4 expression in domestic animal species and show similarity in TLR4 staining in macrophages, epithelium and vascular endothelium among dog, pig and cattle.  相似文献   

11.
12.
Smokers with airflow obstruction have an increased risk of atherosclerosis, but the relationship between the pathogenesis of these diseases is not well understood. To determine whether hypercholesterolemia alters lung inflammation and emphysema formation, we examined the lung phenotype of two hypercholesterolemic murine models of atherosclerosis at baseline and on a high-fat diet. Airspace enlargement developed in the lungs of apolipoprotein E-deficient (Apoe(-/-)) mice exposed to a Western-type diet for 10 wk. An elevated number of macrophages and lymphocytes accompanied by an increase in matrix metalloproteinase-9 (MMP-9) activity and MMP-12 expression was observed in the lungs of Apoe(-/-) mice on a Western-type diet. In contrast, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice did not exhibit lung destruction or inflammatory changes. Most importantly, we revealed augmented expression of the downstream targets of the Toll-like receptor (TLR) pathway, interleukin-1 receptor-associated kinase 1, and granulocyte colony-stimulating factor, in the lungs of Apoe(-/-) mice fed with a Western-type diet. In addition, we demonstrated overexpression of MMP-9 in Apoe(-/-) macrophages treated with TLR4 ligand, augmented with the addition of oxidized LDL, suggesting that emphysema in these mice results from the activation of the TLR pathway secondary to known abnormal cholesterol efflux. Our findings indicate that, in Apoe(-/-) mice fed with an atherogenic diet, abnormal cholesterol efflux leads to increased systemic inflammation with subsequent lung damage and emphysema formation.  相似文献   

13.
14.
15.
Paracrine signaling mediated by FGF-10 and the FGF-R2IIIb receptor is required for formation of the lung. To determine the temporal requirements for FGF signaling during pulmonary morphogenesis, Sprouty-4 (Spry-4), an intracellular FGF receptor antagonist, was expressed in epithelial cells of the fetal lung under control of a doxycycline-inducible system. Severe defects in lobulation and severe lung hypoplasia were observed when Spry-4 was expressed throughout fetal lung development (E6.5-E18.5) or from E6.5 until E13.5. Effects of Spry-4 on branching were substantially reversed by removal of doxycycline from the dam at E12.5, but not at E13.5. In contrast, when initiated late in development (E12.5 to birth), Spry-4 caused less severe pulmonary hypoplasia. Expression of Spry-4 from E16.5 to E18.5 reduced lung growth and resulted in perinatal death due to respiratory failure. Expression of Spry-4 during the saccular and alveolar stages, from E18.5 to postnatal day 21, caused mild emphysema. These findings demonstrate that the embryonic-pseudoglandular stage is a critical time period during which Spry-sensitive pathways are required for branching morphogenesis, lobulation, and formation of the peripheral lung parenchyma.  相似文献   

16.
Toll-like receptor (TLR) pathways signal through microbial components stimulation to induce innate immune responses. Herein, we demonstrate that BCL10, a critical molecule that signals between the T cell receptor and IkappaB kinase complexes, is involved in the innate immune system and is required for appropriate TLR4 pathway and nuclear factor-kappaB (NF-kappaB) activation. In response to lipopolysaccharide (LPS) stimulation, BCL10 was recruited to TLR4 signaling complexes and associated with Pellino2, an essential component down-stream of BCL10 in the TLR4 pathway. In a BCL10-deficient macrophage cell line, LPS-induced NF-kappaB activation was consistently defective, whereas activator protein-1 and Elk-1 signaling was intact. In addition, we found that BCL10 was targeted by SOCS3 for negative regulation in LPS signaling. The recruitment of BCL10 to TLR4 signaling complexes was attenuated by induced expression of SOCS3 in a feedback loop. Furthermore, ectopic SOCS3 expression blocked the interaction between BCL10 and Pellino2 together with BCL10-generated NF-kappaB activation and inducible nitric-oxide synthase expression. Together, these data define an important role of BCL10 in the innate immune system.  相似文献   

17.
Pulmonary hypertension is common in bronchopulmonary dysplasia and is associated with increased mortality and morbidity. This pulmonary hypertension is due to abnormal microvascular development and pulmonary vascular remodeling resulting in reduced cross‐sectional area of pulmonary vasculature. The epidemiology, etiology, clinical features, diagnosis, suggested management, and outcomes of pulmonary hypertension in the setting of bronchopulmonary dysplasia are reviewed. In summary, pulmonary hypertension is noted in a fifth of extremely low birth weight infants, primarily those with moderate or severe bronchopulmonary dysplasia, and persists to discharge in many infants. Diagnosis is generally by echocardiography, and some infants require cardiac catheterization to identify associated anatomic cardiac lesions or systemic‐pulmonary collaterals, pulmonary venous obstruction or myocardial dysfunction. Serial echocardiography and B‐type natriuretic peptide measurement may be useful for following the course of pulmonary hypertension. Currently, there is not much evidence to indicate optimal management approaches, but many clinicians maintain oxygen saturation in the range of 91 to 95%, avoiding hypoxia and hyperoxia, and often provide inhaled nitric oxide, sometimes combined with sildenafil, prostacyclin, or its analogs, and occasionally endothelin‐receptor antagonists. Birth Defects Research (Part A) 100:240–246, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
19.
Bacterial lipopolysaccharides (LPS) initiate immune response through Toll-like receptor 4 (TLR4). Because many a times host is confronted with secondary bacterial challenges, it is critical to understand TLR4 expression following initial provocation. We studied TLR4 expression in rats at various times after intra-tracheal instillation of LPS. Although TLR4 mRNA was undetectable in normal lungs, it increased at 6h and 12h and declined at 36h post-LPS treatment. Western blots showed TLR4 protein at all time points. Immunohistochemistry localized TLR4 in alveolar septal cells, bronchial epithelium, macrophages and endothelium of large and peribronchial blood vessels. Dual label immunoelectron microscopy showed co-localization of TLR4 and LPS in the cytoplasm and nucleus of various lung and inflammatory cells. Nuclear localization of TLR4 was confirmed with Western blots on lung nuclear extracts. We conclude that TLR4 expression in lung is sustained up to 36 hours and that TLR4 and LPS are localized in the cytoplasm and nuclei of lung cells.  相似文献   

20.
目的:探讨右美托嘧啶对大鼠再灌注损伤肺组织Toll样受体素4(TLR4)表达的调控,并分析其对肺保护作用机制。方法:采用大鼠在体左侧肺缺血/再灌注(I/R)模型,50只健康雄性成年SD大鼠随机分为5组(n=10):对照组(Sham组)、缺血/再灌注组(I/R组)、右美托咪定组(Dex组)、阿替美唑组(Atip组)、右美托咪定+阿替美唑组(Dex+Atip组),实验结束后处死大鼠,留取左肺,检测肺湿干重比(W/D)和总肺水含量(TLW);光镜下观察肺组织形态结构变化;PCR检测肺组织TLR4 mRNA表达;Western blot检测肺组织TLR4的蛋白表达。结果:与Sham组相比,其余各组W/D和TLW明显升高(P<0.05,P<0.01),TLR4 mRNA和蛋白表达量上升(P<0.01),光镜显示肺组织结构出现明显损伤性变化;与I/R组相比,Dex组W/D和TLW下降(P<0.05,P<0.01),TLR4 mRNA和蛋白表达量降低(P<0.01),光镜下肺组织损伤减轻;与Dex组比较,Dex+Atip组W/D和TLW明显升高(P<0.05,P<0.01),TLR4 mRNA和蛋白表达量上升(P<0.01),光镜肺组织结构损伤严重;I/R组、Atip组、Dex+Atip组两两比较,以上各指标均无统计学差异(P > 0.05)。结论:I/R可引起大鼠肺组织TLR4表达上调和肺组织损伤;右美托咪啶可减轻肺I/R损伤,抑制TLR4表达,这种作用与α2-肾上腺素能受体有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号