首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular functions of an organism are maintained by protein-protein interactions. Those proteins that bind multiple partners asynchronously (date hub proteins) are important to make the interaction network coordinated. It is known that many date hub proteins bind different partners at overlapping (OV) interfaces. To understand how OV interfaces of date hub proteins can recognize multiple partners, we analyzed the difference between OV and non-overlapping (Non-OV) regions of interfaces involved in the binding of different partners. By using the structures of 16 date hub proteins with various interaction partners (ranging from 5 to 33), we compared buried surface area, compositions of amino acid residues and secondary structures, and side-chain orientations. It was found that buried interface residues are important for recognizing multiple partners, while exposed interface residues are important for determining specificity to a particular ligand. In addition, our analyses reveal that residue compositions in OV and Non-OV regions are different and that residues in OV region show diverse side-chain torsion angles to accommodate binding to multiple targets.  相似文献   

2.
Date hub proteins have 1 or 2 interaction interfaces but many interaction partners. This raises the question of whether all partner proteins compete for the interaction interface of the hub or if the cell carefully regulates aspects of this process? Here, we have used real-time rendering of protein interaction networks to analyse the interactions of all the 1 or 2 interface hubs of Saccharomyces cerevisiae during the cell cycle. By integrating previously determined structural and gene expression data, and visually hiding the nodes (proteins) and their edges (interactions) during their troughs of expression, we predict when interactions of hubs and their partners are likely to exist. This revealed that 20 out of all 36 one- or two- interface hubs in the yeast interactome fell within two main groups. The first was dynamic hubs with static partners, which can be considered as ‘competitive hubs’. Their interaction partners will compete for the interaction interface of the hub and the success of any interaction will be dictated by the kinetics of interaction (abundance and affinity) and subcellular localisation. The second was static hubs with dynamic partners, which we term ‘non-competitive hubs’. Regulatory mechanisms are finely tuned to lessen the presence and/or effects of competition between the interaction partners of the hub. It is possible that these regulatory processes may also be used by the cell for the regulation of other, non-cell cycle processes.  相似文献   

3.
Chen TW  Gan RR  Wu TH  Lin WC  Tang P 《Genomics》2012,100(3):149-156
During the viral infection and replication processes, viral proteins are highly regulated and may interact with host proteins. However, the functions and interaction partners of many viral proteins have yet to be explored. Here, we compiled a VIral Protein domain DataBase (VIP DB) to associate viral proteins with putative functions and interaction partners. We systematically assign domains and infer the functions of proteins and their protein interaction partners from their domain annotations. A total of 2,322 unique domains that were identified from 2,404 viruses are used as a starting point to correlate GO classification, KEGG metabolic pathway annotation and domain-domain interactions. Of the unique domains, 42.7% have GO records, 39.6% have at least one domain-domain interaction record and 26.3% can also be found in either mammals or plants. This database provides a resource to help virologists identify potential roles for viral protein. All of the information is available at http://vipdb.cgu.edu.tw.  相似文献   

4.
The paramyxovirus envelope fuses with the host cell membrane by cooperative interaction of two transmembrane glycoproteins: the hemagglutinin neuraminidase (HN) and the fusion (F) glycoprotein. The interaction appears to be finely regulated, as both proteins must derive from the same viral species to obtain a functional interaction. Because HN and F do not form stable complexes, this interaction is poorly characterized. This article demonstrates that a modification of a classical bioinformatic method based on the co-evolution of interacting partners can detect the specificity of the HN and F interaction. The proposed approach relies on a relatively new nonlinear signal analysis technique, recurrence quantification analysis (RQA), applied to the hydrophobicity sequences of viral proteins. This technique is able to shed light on the interaction between HN and F proteins in the virus-cell fusion and, more generally, permits the quantitative comparison of nonhomologue protein systems. On the contrary, the same co-evolution approach, based on the classical sequence alignment procedure, was unable to discriminate interacting partners from the general strict correlation existing between the evolution of viral proteins as a whole. The cooperation between HN and F in the fusion process is thus demonstrated by a bioinformatic, purely sequence-dependent, perspective.  相似文献   

5.
The cytoplasmic dynein light chain 1 (DYNLL1) is an important constituent of motor proteins complex. In human it is encoded by DYNLL1 gene. It is involved in cargo transport functions and interacts with many viral proteins with the help of short linear consensus motif sequence (K/R) XTQT. Viral proteins bind to DYNLL1 through its consensus short linear motif (SLiM) sequence to reach the target site in the cell and cause different infections in the host. It is still unknown if bacterial proteins also contain the same conserved SLiMs sequence through which they bind to this motor protein and cause infections. So, it is important to investigate the role of DYNLL1 in human bacterial infections. The interaction partner proteins of DYNLL1 against conserved viral motif sequences were predicted through PDBSum. Pairwise sequence alignment, between viral motif sequence and that of predicted proteins, was performed to identify conserved region in predicted interaction partners. Docking between the DYNLL1 and new pathogenic interaction partners was performed, by using PatchDock, to explore the protein-protein binding quality. Interactions of docked complexes were visualized by DimPlot. Three pathogenic bacterial proteins i.e., enterochelin esterase (3MGA), protective antigen (3J9C) and putative lipoprotein (4KT3) were selected as candidate interaction partners of DYNLL1. The putative lipoprotein (4KT3) showed low quality binding with DYNLL1. So, enterochelin esterase (3MGA) and protective antigen (3J9C) were speculated to be involved in human bacterial infections by using DYNLL1 to reach their target sites.  相似文献   

6.
Polyglutamine (polyQ) diseases are genetically inherited neurodegenerative disorders. They are caused by mutations that result in polyQ expansions of particular proteins. Mutant proteins form intranuclear aggregates, induce cytotoxicity and cause neuronal cell death. Protein interaction data suggest that polyQ regions modulate interactions between coiled‐coil (CC) domains. In the case of the polyQ disease spinocerebellar ataxia type‐1 (SCA1), interacting proteins with CC domains further enhance aggregation and toxicity of mutant ataxin‐1 (ATXN1). Here, we suggest that CC partners interacting with the polyQ region of a mutant protein, increase its aggregation while partners that interact with a different region reduce the formation of aggregates. Computational analysis of genetic screens revealed that CC‐rich proteins are highly enriched among genes that enhance pathogenicity of polyQ proteins, supporting our hypothesis. We therefore suggest that blocking interactions between mutant polyQ proteins and their CC partners might constitute a promising preventive strategy against neurodegeneration.  相似文献   

7.
Affinity purification coupled to mass spectrometry provides a reliable method for identifying proteins and their binding partners. In this study we have used Drosophila melanogaster proteins triple tagged with Flag, Strep II, and Yellow fluorescent protein in vivo within affinity pull-down experiments and isolated these proteins in their native complexes from embryos. We describe a pipeline for determining interactomes by Parallel Affinity Capture (iPAC) and show its use by identifying partners of several protein baits with a range of sizes and subcellular locations. This purification protocol employs the different tags in parallel and involves detailed comparison of resulting mass spectrometry data sets, ensuring the interaction lists achieved are of high confidence. We show that this approach identifies known interactors of bait proteins as well as novel interaction partners by comparing data achieved with published interaction data sets. The high confidence in vivo protein data sets presented here add new data to the currently incomplete D. melanogaster interactome. Additionally we report contaminant proteins that are persistent with affinity purifications irrespective of the tagged bait.  相似文献   

8.
The CDK2-associated cyclin A1 is essential for spermatogenesis and contributes to leukemogenesis. The detailed molecular functions of cyclin A1 remain unclear, since the molecular networks involving cyclin A1-CDK2 have not been elucidated. Here, we identified novel cyclin A1/CDK2 interaction partners in a yeast triple-hybrid approach. Several novel proteins (INCA1, KARCA1, and PROCA1) as well as the known proteins GPS2 (G-protein pathway suppressor 2), Ku70, receptor for activated protein kinase C1/guanine nucleotide-binding protein beta-2-like-1, and mRNA-binding motif protein 4 were identified as interaction partners. These proteins link the cyclin A1-CDK2 complex to diverse cellular processes such as DNA repair, signaling, and splicing. Interactions were confirmed by GST pull-down assays and co-immunoprecipitation. We cloned and characterized the most frequently isolated unknown gene, which we named INCA1 (inhibitor of CDK interacting with cyclin A1). The nuclear INCA1 protein is evolutionarily conserved and lacks homology to any known gene. This novel protein and two other interacting partners served as substrates for the cyclin A1-CDK2 kinase complex. Cyclin A1 and all interaction partners were highly expressed in testis with varying degrees of tissue specificity. The highest expression levels were observed at different time points during testis maturation, whereas expression levels in germ cell cancers and infertile testes decreased. Taken together, we identified testicular interaction partners of the cyclin A1-CDK2 complex and studied their expression pattern in normal organs, testis development, and testicular malignancies. Thereby, we establish a new basis for future functional analyses of cyclin A1. We provide evidence that the cyclin A1-CDK2 complex plays a role in several signaling pathways important for cell cycle control and meiosis.  相似文献   

9.
Fasciculation and elongation zeta/zygin(FEZ) proteins are a family of hub proteins and share many characteristics like high connectivity in interaction networks, they are involved in several cellular processes, evolve slowly and in general have intrinsically disordered regions. In 1985, unc-76 gene was firstly described and involved in axonal growth in C. elegans, and in 1997 Bloom and Horvitz enrolled also the human homologues genes, FEZ1 and FEZ2, in this process. While nematodes possess one gene(unc-76), mammalians have one more copy(FEZ1 and FEZ2). Several animal models have been used to study FEZ family functions like: C. elegans, D. melanogaster, R. novergicus and human cells.Complementation assays were performed and demonstrated the function conservation between paralogues. Human FEZ1 protein is more studied followed by UNC-76 and FEZ2 proteins, respectively. While FEZ1 and UNC-76 shared interaction partners, FEZ2 evolved and increased the number of protein-protein interactions(PPI) with cytoplasmatic partners. FEZ proteins are implicated in intracellular transport, acting as bivalent cargo transport adaptors in kinesinmediated movement. Especially in light of this cellular function, this family of proteins has been involved in several processes like neuronal development,neurological disorders, viral infection and autophagy. However, nuclear functions of FEZ proteins have been explored as well, due to high content of PPI with nuclear proteins, correlating FEZ1 expression to Sox2 and Hoxb4 gene regulation and retinoic acid signaling. These recent findings open new avenue to study FEZ proteins functions and its involvement in already described processes.This review intends to reunite aspects of evolution, structure, interaction partners and function of FEZ proteins and correlate them to physiological and pathological processes.  相似文献   

10.
Determination of the binding motif and identification of interaction partners of the modular domains such as SH2 domains can enhance our understanding of the regulatory mechanism of protein-protein interactions. We propose here a new computational method to achieve this goal by integrating the orthogonal information obtained from binding free energy estimation and peptide sequence analysis. We performed a proof-of-concept study on the SH2 domains of SAP and Grb2 proteins. The method involves the following steps: (1) estimating the binding free energy of a set of randomly selected peptides along with a sample of known binders; (2) clustering all these peptides using sequence and energy characteristics; (3) extracting a sequence motif, which is represented by a hidden Markov model (HMM), from the cluster of peptides containing the sample of known binders; and (4) scanning the human proteome to identify binding sites of the domain. The binding motifs of the SAP and Grb2 SH2 domains derived by the method agree well with those determined through experimental studies. Using the derived binding motifs, we have predicted new possible interaction partners for the Grb2 and SAP SH2 domains as well as possible interaction sites for interaction partners already known. We also suggested novel roles for the proteins by reviewing their top interaction candidates.  相似文献   

11.
12.
The control of protein-protein interactions is a fundamental aspect of cell regulation. Here we describe a new approach to detect the interaction of two proteins in vivo. By this method, one binding partner is an integral membrane protein whereas the other is soluble but fused to a G-protein gamma-subunit. If the binding partners interact, G-protein signaling is disrupted. We demonstrate interaction between known binding partners, syntaxin 1a with neuronal Sec1 (nSec1), and the fibroblast-derived growth factor receptor 3 (FGFR3) with SNT-1. In addition, we describe a genetic screen to identify nSec1 mutants that are expressed normally, but are no longer able to bind to syntaxin 1a. This provides a convenient method to study interactions of integral membrane proteins, a class of molecules that has been difficult to study by existing biochemical or genetic methods.  相似文献   

13.
Most plant disease resistance (R) proteins contain a series of leucine-rich repeats (LRRs), a nucleotide-binding site (NBS), and a putative amino-terminal signaling domain. They are termed NBS-LRR proteins. The LRRs of a wide variety of proteins from many organisms serve as protein interaction platforms, and as regulatory modules of protein activation. Genetically, the LRRs of plant R proteins are determinants of response specificity, and their action can lead to plant cell death in the form of the familiar hypersensitive response (HR). A total of 149 R genes are potentially expressed in the Arabidopsis genome, and plant cells must deal with the difficult task of assembling many of the proteins encoded by these genes into functional signaling complexes. Eukaryotic cells utilize several strategies to deal with this problem. First, proteins are spatially restricted to their sub-cellular site of function, thus improving the probability that they will interact with their proper partners. Second, these interactions are architecturally organized to avoid inappropriate signaling events and to maintain the fidelity and efficiency of the response when it is initiated. Recent results provide new insights into how the signaling potential of R proteins might be created, managed and held in check until specific stimulation following infection. Nevertheless, the roles of the R protein partners in these regulatory events that have been defined to date are unclear.  相似文献   

14.
Chen W  Dittmer DP 《Journal of virology》2011,85(18):9495-9505
The latency-associated nuclear antigen (LANA) is central to the maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) and to the survival of KSHV-carrying tumor cells. In an effort to identify interaction partners of LANA, we purified authentic high-molecular-weight complexes of LANA by conventional chromatography followed by immunoprecipitation from the BC-3 cell line. This is the first analysis of LANA-interacting partners that is not based on forced ectopic expression of LANA. Subsequent tandem mass spectrometry (MS/MS) analysis identified many of the known LANA-interacting proteins. We confirmed LANA's interactions with histones. Three classes of proteins survived our stringent four-step purification procedure (size, heparin, anion, and immunoaffinity chromatography): two heat shock proteins (Hsp70 and Hsp96 precursor), signal recognition particle 72 (SRP72), and 10 different ribosomal proteins. These proteins are likely involved in structural interactions within LANA high-molecular-weight complexes. Here, we show that ribosomal protein S6 (RPS6) interacts with LANA. This interaction is mediated by the N-terminal domain of LANA and does not require DNA or RNA. Depletion of RPS6 from primary effusion lymphoma (PEL) cells dramatically decreases the half-life of full-length LANA. The fact that RPS6 has a well-established nuclear function beyond its role in ribosome assembly suggests that RPS6 (and by extension other ribosomal proteins) contributes to the extraordinary stability of LANA.  相似文献   

15.
With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein’s function is the identification of its interaction partners. Although in saliva some proteins may act primarily as single monomeric units, a significant percentage of all salivary proteins, if not the majority, appear to act in complexes with partners to execute their diverse functions. Coimmunoprecipitation (Co-IP) and pull-down assays were used to identify the heterotypic complexes between histatin 5, a potent natural antifungal protein, and other salivary proteins in saliva. Classical protein–protein interaction methods in combination with high-throughput mass spectrometric techniques were carried out. Co-IP using protein G magnetic Sepharose TM beads suspension was able to capture salivary complexes formed between histatin 5 and its salivary protein partners. Pull-down assay was used to confirm histatin 5 protein partners. A total of 52 different proteins were identified to interact with histatin 5. The present study used proteomic approaches in conjunction with classical biochemical methods to investigate protein–protein interaction in human saliva. Our study demonstrated that when histatin 5 is complexed with salivary amylase, one of the 52 proteins identified as a histatin 5 partner, the antifungal activity of histatin 5 is reduced. We expected that our proteomic approach could serve as a basis for future studies on the mechanism and structural-characterization of those salivary protein interactions to understand their clinical significance.  相似文献   

16.
Protein kinase C (PKC) isoforms regulate a number of processes crucial for the fate of a cell. In this study we identify previously unrecognized interaction partners of PKCα and a novel role for PKCα in the regulation of stress granule formation during cellular stress. Three RNA-binding proteins, cytoplasmic poly(A)(+) binding protein (PABPC1), IGF-II mRNA binding protein 3 (IGF2BP3), and RasGAP binding protein 2 (G3BP2) all co-precipitate with PKCα. RNase treatment abolished the association with IGF2BP3 and PABPC1 whereas the PKCα-G3BP2 interaction was largely resistant to this. Furthermore, interactions between recombinant PKCα and G3BP2 indicated that the interaction is direct and PKCα can phosphorylate G3BP2 in vitro. The binding is mediated via the regulatory domain of PKCα and the C-terminal RNA-binding domain of G3BP2. Both proteins relocate to and co-localize in stress granules, but not to P-bodies, when cells are subjected to stress. Heat shock-induced stress granule assembly and phosphorylation of eIF2α are suppressed following downregulation of PKCα by siRNA. In conclusion this study identifies novel interaction partners of PKCα and a novel role for PKCα in regulation of stress granules.  相似文献   

17.
The Atg8/LC3/GABARAP family of proteins, a group that has structural homology with ubiquitin, connects with a large set of binding partners to function in macroautophagy (hereafter autophagy). This interaction occurs primarily via a conserved motif termed the LC3-interacting region (LIR), or the Atg8-interacting motif (AIM). The consensus sequence for this motif, [W/F/Y]xx[L/I/V], can be found in many proteins, but only some of them are physiological partners containing a functional LIR/AIM. Because the structure of many full-length partners has not been, or cannot be, solved, the structural context of the LIR/AIM within the native protein conformation is not obvious. Here we suggest that the functional LIR/AIM is a short linear motif (SLiM) protein-binding module, arising from an intrinsically disordered region. This finding enables the rapid elimination of some false Atg8/LC3/GABARAP-binding proteins, and connects the exponentially growing knowledge on disordered SLiMs with autophagy.  相似文献   

18.
cAMP (adenosine-3',5'-cyclic monophosphate) is a general second messenger controlling distinct targets in eukaryotic cells. In a (sub)proteomic approach, two classes of phosphorothioate cAMP affinity tools were used to isolate and to identify signalling complexes of the main cAMP target, cAMP dependent protein kinase (PKA). Agonist analogues (here: Sp-cAMPS) bind to the regulatory subunits of PKA (PKA-R), together with their interaction partners, and cause dissociation of a holoenzyme complex comprising PKA-R and catalytic subunits of PKA (PKA-C). Antagonist analogues (here: Rp-cAMPS) bind to the holoenzyme without dissociating the complex and were developed to identify interaction partners that bind to the entire complex or to PKA-C. More than 80 different proteins were isolated from tissue extracts including several PKA isoforms and known as well as potentially new interaction partners. Nevertheless, unspecific binding of general nucleotide binding proteins limited the outcome of this chemical proteomics approach. Surface plasmon resonance (SPR) was employed to optimise the entire workflow of pull down proteomics and to quantify the effects of different nucleotides (ATP, ADP, GTP and NADH) on PKA-R binding to affinity material. We could demonstrate that the addition of NADH to lysates improved specificity in pull down experiments. Using a combination of SPR studies and pull down experiments it was shown unambiguously that it is possible to specifically elute protein complexes with cAMP or cGMP from cAMPS analogue matrices. The side-by-side analysis of the PKA-R interactome and the holoenzyme complexed with interacting proteins will contribute to a further dissection of the multifaceted PKA signalling network.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号