首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of sleep on ventilation, metabolic rate, cardiovascular function, and regional distribution of blood flow during hypoxemia (PaO2 of 45-50 mm Hg (1 mm Hg = 133.3 Pa)) was studied in piglets at 6+/-1 and 34+/-5 days (mean+/-SD). Measurement of ventilation and metabolic rate was done in a metabolic chamber, and blood flow was measured using the microsphere technique. A subgroup of animals was instrumented for cardiac output measurement (dye-dilution technique) and continuous monitoring of the hemoglobin saturation in oxygen (SaO2). We found that although sleep did not influence the metabolic and cardiac output response to hypoxemia, it affected the ventilatory response as well as the brain and the respiratory muscle blood flows. During active sleep in the older animals, the ventilatory response to hypoxemia was smaller than in the other two states; marked drops in SaO2 occurred with changes in the breathing pattern; and that state was associated with the highest rate of brain blood flow. As well, age affected the ventilatory and metabolic response, but not the cardiovascular response to hypoxemia. The age-dependent ventilatory changes with hypoxemia (smaller ventilatory response in the young than in the older animals) were related to the different levels of oxygen consumption. In summary, active sleep was responsible for all the sleep-dependent changes in the response to a moderate degree of hypoxemia.  相似文献   

2.
Electrical activity of the olfactory bulb, olfactory tubercle, amygdala, hippocampus, hypothalamus, and neocortex in the various phases of natural sleep was studied in chronic experiments on dogs under conditions close to those of free behavior. During paradoxical sleep it was found that a high-frequency synchronized rhythm of sinusoidal waves with a frequency of 36–42 Hz arises in the olfactory structures and amygdala. Generation of this activity during paradoxical sleep, by contrast with wakefulness, was unconnected with stimulation of the olfactory receptors and was probably purely central in origin. A study of the dynamics of the olfacto-amygdaloid rhythm during the paradoxical phase, and its comparison with somatic, autonomic, and EEG correlates of sleep, led to the conclusion that this rhythm is a specific EEG correlate of the paradoxical phase of sleep in dogs.  相似文献   

3.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

4.
Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.  相似文献   

5.
Experiments were carried out on four healthy male subjects in two separate sessions: (a) A baseline period of two consecutive nights, one spent at thermoneutrality [operative temperature (To) = 30 degrees C, dew-point temperature (Tdp) = 7 degrees C, air velocity (Va) = 0.2 m.s-1] and the other in hot condition (To = 35 degrees C, Tdp = 7 degrees C, Va = 0.2 m.s-1). During the day, the subjects lived in their normal housing and were engaged in their usual activities. (b) An acclimation period of seven consecutive daily heat exposures from 1400 to 1700 hours (To = 44 degrees C, Tdp = 29 degrees C, Va = 0.3 m.s-1). During each night, the subjects slept in thermoneutral or in hot conditions. The sleep measurements were: EEG from two sites, EOG from both eyes, EMG and EKG. Esophageal and ten skin temperatures were recorded continuously during the night. In the nocturnal hot conditions, a sweat collection capsule recorded the sweat gland activity in the different sleep stages. Results showed that passive body heating had no significant effect on the sleep structure of subsequent nights at thermoneutrality. In contrast, during nights at To = 35 degrees C an effect of daily heat exposure was observed on sleep. During the 2nd night of the heat acclimation period, sleep was more restless and less efficient than during the baseline night. The rapid eye movement sleep duration was reduced, while the rate of transient activation phases observed in sleep stage 2 increased significantly. On the 7th night, stage 4 sleep increased (+68%) over values observed during the baseline night.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
High altitude increases pulmonary arterial pressure (PAP), but no measurements have been made in humans above 4,500 m. Eight male athletic volunteers were decompressed in a hypobaric chamber for 40 days to a barometric pressure (PB) of 240 Torr, equivalent to the summit of Mt. Everest. Serial hemodynamic measurements were made at PB 760 (sea level), 347 (6,100 m), and 282/240 Torr (7,620/8,840 m). Resting PAP and pulmonary vascular resistance (PVR) increased from sea level to maximal values at PB 282 Torr from 15 +/- 0.9 to 34 +/- 3.0 mmHg and from 1.2 +/- 0.1 to 4.3 +/- 0.3 mmHg.l-1 X min, respectively. During near maximal exercise PAP increased from 33 +/- 1 mmHg at sea level to 54 +/- 2 mmHg at PB 282 Torr. Right atrial and wedge pressures were not increased with altitude. Acute 100% O2 breathing lowered cardiac output and PAP but not PVR. Systemic arterial pressure and resistance did not rise with altitude but did increase with O2 breathing, indicating systemic control differed from the lung circulation. We concluded that severe chronic hypoxia caused elevated pulmonary resistance not accompanied by right heart failure nor immediately reversed by O2 breathing.  相似文献   

7.
8.
The ventilatory and arterial blood pressure (ABP) responses to isocapnic hypoxia during wakefulness progressively increased in normal subjects staying 4 wk at 5,050 m (Insalaco G, Romano S, Salvaggio A, Braghiroli A, Lanfranchi P, Patruno V, Donner CF, and Bonsignore G; J Appl Physiol 80: 1724-1730, 1996). In the same subjects (n = 5, age 28-34 yr) and expedition, nocturnal polysomnography with ABP and heart rate (HR) recordings were obtained during the 1st and 4th week to study the cardiovascular effects of phasic (i.e., periodic breathing-dependent) vs. tonic (i. e., acclimatization-dependent) hypoxia during sleep. Both ABP and HR fluctuated during non-rapid eye movement sleep periodic breathing. None of the subjects exhibited an ABP increase during the ventilatory phases that correlated with the lowest arterial oxygen saturation of the preceding pauses. Despite attenuation of hypoxemia, ABP and HR behaviors during sleep in the 4th wk were similar to those in the 1st wk. Because ABP during periodic breathing in the ventilatory phase increased similarly to the ABP response to progressive hypoxia during wakefulness, ABP variations during ventilatory phases may reflect ABP responsiveness to peripheral chemoreflex sensitivity rather than the absolute value of hypoxemia, suggesting a major tonic effect of hypoxia on cardiorespiratory control at high altitude.  相似文献   

9.
During sleep, in thermoneutral conditions, the noise of a passing vehicle induces a biphasic cardiac response, a transient peripheral vasoconstriction and sleep disturbances. The present study was performed to determine whether or not the physiological responses were modified in a hot environment or after daytime exposure to both heat and noise. Eight young men were exposed to a nocturnal thermoneutral (20 degrees C) or hot (35 degrees C) environment disturbed by traffic noise. During the night, the peak intensities were of 71 dB(A) for trucks, 67 dB(A) for motorbikes and 64 dB(A) for cars. The background noise level (pink noise) was set at 30 dB(A). The noises were randomly distributed at a rate of 9.h-1. Nights were equally preceded by daytime exposure to combined heat and noise or to no disturbance. During the day, the noises as well as the background noise levels were increased by 15 dB(A) and the rate was 48.h-1. Electroencephalogram (EEG) measures of sleep, electrocardiograms and finger pulse amplitudes were continuously recorded. Regardless of the day condition, when compared with undisturbed nights, the nocturnal increase in the level of heart rate induced by heat exposure disappeared when noise was added. Percentages, delays, magnitudes and costs of cardiac and vascular responses as well as EEG events such as transient activation phases (TAP) due to noise were not affected by nocturnal thermal load or by the preceding daytime exposure to disturbances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sleep is associated with marked alterations in ventilatory control that lead to perturbations in respiratory timing, breathing pattern, ventilation, pharyngeal collapsibility, and sleep-related breathing disorders (SRBD). Mouse models offer powerful insight into the pathogenesis of SRBD; however, methods for obtaining the full complement of continuous, high-fidelity respiratory, electroencephalographic (EEG), and electromyographic (EMG) signals in unrestrained mice during sleep and wake have not been developed. We adapted whole body plethysmography to record EEG, EMG, and respiratory signals continuously in unrestrained, unanesthetized mice. Whole body plethysmography tidal volume and airflow signals and a novel noninvasive surrogate for respiratory effort (respiratory movement signal) were validated against simultaneously measured gold standard signals. Compared with the gold standard, we validated 1) tidal volume (correlation, R(2) = 0.87, P < 0.001; and agreement within 1%, P < 0.001); 2) inspiratory airflow (correlation, R(2) = 0.92, P < 0.001; agreement within 4%, P < 0.001); 3) expiratory airflow (correlation, R(2) = 0.83, P < 0.001); and 4) respiratory movement signal (correlation, R(2) = 0.79-0.84, P < 0.001). The expiratory airflow signal, however, demonstrated a decrease in amplitude compared with the gold standard. Integrating respiratory and EEG/EMG signals, we fully characterized sleep and breathing patterns in conscious, unrestrained mice and demonstrated inspiratory flow limitation in a New Zealand Obese mouse. Our approach will facilitate studies of SRBD mechanisms in inbred mouse strains and offer a powerful platform to investigate the effects of environmental and pharmacological exposures on breathing disturbances during sleep and wakefulness.  相似文献   

11.
Heart rate, EEG, and motor responses were recorded following presentation of a series of 6–10 sound stimuli (2.5-s tones of 1000, 4000, and 250 Hz, 70 dB, interstimulus intervals 18–25 s) in neonates aged 9 to 22 weeks during stage 2–3 sleep. The infants (17 of 19) revealed heart rate (HR) changes in response to tone stimuli that consisted in an expanded form of three phases: (1) short-latency (at 1 s after tone presentation) HR deceleration, (2) HR acceleration with a maximum at 3–5 s, and (3) late HR deceleration at 6–9 s of the poststimulus interval. The occurrence rate of the first two phases of cardiac response is relatively constant during a series of stimuli, whereas the likelihood of late HR deceleration is the highest following the first tone presentation and decreases significantly when the stimulus is repeated. Differences in the dynamics and statistical analysis allow a relative independence of all the three response phases to be suggested. The HR acceleration phase is dramatically enhanced in association with the motor response elicited by the sound stimulus. The late HR deceleration phase occurs not only after the first presentation of stimuli, but also when they are repeated if they evoke EEG reaction (vertex potentials) in response to both the beginning and end of the tone sound. Possible mechanisms of the three phases of poststimulus HR changes are: the vagal cardiac reflex associated with the acoustic (adaptive) reflex, activation of sympathetic efferents in combination with the startle reflex, and secondary vagal deceleration of sinus rhythm likely to be associated with the processes of perception (detection) of a “novel” stimulus and to serve as an indirect sign of an orienting reaction.  相似文献   

12.
Several behavioral and physiological adaptations have been developed in evolution of Pinnipeds allowing them to sleep both on land and in water. To date sleep has been examined in detail in eared and true seals (the families of Otariidae and Phocidae). The aim of this study was to examine sleep in another semiaquatic mammal — the walrus, which is the only extant representative of the family Odobenidae. Slow wave and paradoxical sleep (SWS and PS) in the examined walrus (2 year old female, weight 130 kg) averaged 19.4 ± 2.0 and 6.9 ± 1.1% of 24-h when on land, and 20.5 ± 0.8% of 24-h and 1.1 ± 0.6% when in water, respectively. The average duration of PS episode was 6.4 ± 0.6 min (maximum 23 min) when on land and 1.8 ± 0.1 min (maximum 3.3 min) when in water. In water, sleep occurred predominantly while the walrus submerged and lay on the bottom of the pool (89% of total sleep time). The walrus usually woke up while emerging to the surface for breathing. Most often EEG slow waves developed synchronously in both cortical hemispheres (90% of SWS time when on land and 97% when in water). Short episodes of interhemispheric EEG asymmetry usually coincided with brief opening of one eye. The pattern of sleep in the walrus was similar to the pattern of sleep in the Otariidae seals while on land (predominantly bilateral SWS, accompanied by regular breathing) and to the pattern of sleep in the Phocidae while in water (sleep during apneas both in depth and at the surface, interrupted by brief arousal when emerging for breathing).  相似文献   

13.
The hypothesis of a predominance of the right hemisphere in stage REM as compared to NREM has been tested through a spectral analysis of the EEG recorded from left (T3) and right (T4) temporal sites in 5 young healthy right-handed male subjects. Variations in the asymmetry coefficient R - L/R + L in different sleep stages have been analyzed by one way ANOVAs and Sheffé's tests. The hypothesis of a progressive increase in left hemisphere activity throughout different REM cycles as one approaches final awakenings have been investigated by comparing variations in the asymmetry coefficient for epochs of REM and stage 2 NREM sampled in different phases of the REM cycle. EEG results do not support either the hypothesized stage dependent or cycle dependent variation in EEG activity during sleep. We question whether variations in EEG amplitude and synchronization can be used as indices of hemispheric asymmetries during sleep.  相似文献   

14.
We recorded EEG from both hemispheres and documented the state of the two eyes in two species of Cetaceans (one beluga and one bottlenose dolphin) and one species of Pinnipeds (two northern fur seals). In the dolphin and beluga we found that episodes of unihemispheric slow wave sleep (USWS) were associated with asymmetry in eye state. During USWS and asymmetrical SWS the eye contralateral to the sleeping hemisphere was mostly closed or in an intermediate state while the eye contralateral to the waking hemisphere was more often open or in an intermediate state. Bilateral eye opening indicated waking in about 80% cases and unilateral eye closure indicated USWS with an accuracy of about 75%. Bilateral eye closure was rare (< 2% of the observation time) and was not necessarily associated with high amplitude SWS. In fur seals, episodes of one eye briefly opening usually occurred in the beginning of sleep episodes and lasted several minutes. Those episodes were frequently associated with lower amplitude EEG slow waves in the contralateral brain hemisphere. During most of their sleep on land, fur seals had both eyes tightly closed. No EEG asymmetry was recorded at this time. Although eye state and EEG stage are correlated in the bottlenose dolphin, beluga and fur seals, short episodes of EEG synchrony (less then 1 min) occur contralateral to an open eye and waking (a more activated EEG) activity can be present contralateral to a closed eye. The available data suggest that two functions of USWS/EEG asymmetry during SWS in Cetaceans and fur seals are multisensory control of the environment and maintenance of motion and postures of sleep. The adaptive advantages of USWS throughout the evolution of Cetaceans and Pinnipeds from terrestrial mammals to present forms could include 1) the avoidance of predators and maintenance of contact with other animals of the same species; 2) continuance of regular breathing; 3) and effective thermoregulation in the water environment.  相似文献   

15.
Ventilatory responses to hypoxaemia during sleep in the newborn   总被引:5,自引:0,他引:5  
Ventilatory responses to rapidly developing hypoxaemia during N2-rebreathing were compared for active and quite sleep in three newborn lambs and four puppies. In lambs, active sleep was associated with: (i) development of ribcage deflation during inspiration, which persisted during progressive hypoxaemia; (ii) depressed ventilatory response to hypoxaemia despite increments of respiratory rate; (iii) delayed arousal. In the puppies, inspiratory collapse of the ribcage did not occur in active sleep and the ventilatory responses during hypoxaemia were similar to those in quite sleep. While apparently defective when related to adults, these responses to hypoxaemia in the lamb are normal. This study illustrates the importance of considering behavioural state and species differences when studying the regulation of breathing, particularly during development.  相似文献   

16.
We determined the effects of specific carotid body chemoreceptor inhibition on the propensity for apnea during sleep. We reduced the responsiveness of the carotid body chemoreceptors using intravenous dopamine infusions during non-rapid eye movement sleep in six dogs. Then we quantified the difference in end-tidal Pco(2) (Pet(CO(2))) between eupnea and the apneic threshold, the "CO(2) reserve," by gradually reducing Pet(CO(2)) transiently with pressure support ventilation at progressively increased tidal volume until apnea occurred. Dopamine infusions decreased steady-state eupneic ventilation by 15 +/- 6%, causing a mean CO(2) retention of 3.9 +/- 1.9 mmHg and a brief period of ventilatory instability. The apneic threshold Pet(CO(2)) rose 5.1 +/- 1.9 Torr; thus the CO(2) reserve was narrowed from -3.9 +/- 0.62 Torr in control to -2.7 +/- 0.78 Torr with dopamine. This decrease in the CO(2) reserve with dopamine resulted solely from the 20.5 +/- 11.3% increase in plant gain; the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal. We conclude that specific carotid chemoreceptor inhibition with dopamine increases the propensity for apnea during sleep by narrowing the CO(2) reserve below eupnea. This narrowing is due solely to an increase in plant gain as the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal control. These findings have implications for the role of chemoreceptor inhibition/stimulation in the genesis of apnea and breathing periodicity during sleep.  相似文献   

17.
We have examined the effects of exposure to chronic maternal anemia, throughout the final one-third of gestation, on postnatal ventilatory and arousal responses to hypoxia, hypercapnia, and combined hypoxia-hypercapnia in sleeping lambs. While resting quietly awake, lambs from anemic ewes had higher arterial PCO(2) levels than control animals during the first 2-3 postnatal wk, but pH, arterial PO(2), and arterial O(2) saturation were not different. During active and quiet sleep lambs from anemic ewes had higher end-tidal CO(2) levels than control animals when breathing room air and at the time of spontaneous arousal or when aroused by progressive hypercapnia or by combined hypoxia-hypercapnia. Ventilation and arterial O(2) saturation during uninterrupted sleep and ventilatory responsiveness to hypoxia (inspiratory O(2) fraction, 10%), progressive hypercapnia, and combined hypoxia/hypercapnia were not significantly affected by exposure to maternal anemia. Our findings show that maternal anemia results in elevated PCO(2) levels in the offspring. This effect may be due, at least in part, to altered pulmonary function.  相似文献   

18.
Blood pressure (BP) and heart rate (HR) are influenced by the sleep-wake cycle, with relatively abrupt falls occurring in association with sleep onset (SO). However, the pattern and rate of fall in BP and HR during SO and the processes that contribute to the fall in these variables have not been fully identified. Continuous BP and HR recordings were collected beginning 1 h before lights out (LO) until the end of the first non-rapid eye movement sleep period in 21 young, healthy participants maintained in a supine position. Five consecutive phases were defined: 1) the 30 min of wakefulness before LO; 2) LO to stage 1 sleep; 3) stage 1 to stage 2 sleep; 4) stage 2 sleep to the last microarousal before stable sleep; and 5) the first 30 min of undisturbed stable sleep. The data were analyzed on a beat-by-beat basis and reported as 2-min periods for phases 1 and 5 and 10% epochs for phases 2, 3, and 4 (as participants had variable time periods in these phases). The level of baroreflex (BR) activity was assessed by the sequence technique and an autoregressive multivariate model. Furthermore, during phases 3 and 4, the BP and HR responses to arousal from sleep were determined. There were substantial falls in BP and HR after LO before the initial onset of theta;-activity (phase 3) and again after the onset of stable sleep after the cessation of spontaneous arousals. During phases 3 and 4 when there were repeated arousals from sleep, the fall in both variables was retarded. Furthermore, both the rate and magnitude of the fall in BP were negatively associated with the number of arousals during phases 3 and 4. There was a small increase in the sensitivity of the BR and indirect evidence of a substantial fall in its set point.  相似文献   

19.
The effect of phasic eye movement activity on ventilation during rapid-eye-movement (REM) sleep was studied in seven healthy young adults by use of the respiratory inductive plethysmograph. Mean ventilation (VE) and ventilatory components during REM sleep were not significantly different from that seen in either stages 1-2 or 3-4 sleep. The percent of rib cage contribution to ventilation in REM sleep, 29.3 +/- 5.1%, was reduced compared with 54.4 +/- 5.8% in stage 1-2 and 52.2 +/- 4.3% in stage 3-4 sleep (P less than 0.005). When one separated breaths by the degree of associated phasic eye movement activity, it became apparent that breathing during REM sleep is very heterogeneous. Increasing eye movement activity was associated with inhibition of ventilation with a reduction in VE from 5.1 +/- 0.3 to 3.8 +/- 0.3 l/min. Tidal volume and frequency both fell, whereas inspiratory duration was unchanged. Compartmental ventilation was also affected, with the fall in the rib cage contribution from 37.8 +/- 6.4 to 15.3 +/- 5.6%. Chest wall and abdominal movement became more asynchronous as phasic-eye-movement activity increased and frank paradoxical breathing was seen.  相似文献   

20.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号