首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The Russian wheat aphid (RWA), Diuraphis noxia Mordvilko, is a serious economic pest of wheat and barley in North America, South America, and South Africa. Using aphid-resistant cultivars has proven to be a viable tactic for RWA management. Several dominant resistance genes have been identified in wheat, Triticum aestivum, including Dn1 in PI 137739, Dn2 in PI 262660, and at least three resistance genes (Dn5+) in PI 294994. The identification of RWA-resistant genes and the development of resistant cultivars may be accelerated through the use of molecular markers. DNA of wheat from near-isogenic lines and segregating F2 populations was amplified with microsatellite primers via PCR. Results revealed that the locus for wheat microsatellite GWM111 (Xgwm111), located on wheat chromosome 7DS (short arm), is tightly linked to Dn1, Dn2 and Dn5, as well as Dnx in PI 220127. Segregation data indicate RWA resistance in wheat PI 220127 is also conferred by a single dominant resistance gene (Dnx). These results confirm that Dn1, Dn2 and Dn5 are tightly linked to each other, and provide new information about their location, being 7DS, near the centromere, instead of as previously reported on 7DL. Xgwm635 (near the distal end of 7DS) clearly marked the location of the previously suggested resistance gene in PI 294994, here designated as Dn8. Xgwm642 (located on 1DL) marked and identified another new gene Dn9, which is located in a defense gene-rich region of wheat chromosome 1DL. The locations of markers and the linked genes were confirmed by di-telosomic and nulli-tetrasomic analyses. Genetic linkage maps of the above RWA resistance genes and markers have been constructed for wheat chromosomes 1D and 7D. These markers will be useful in marker-assisted breeding for RWA-resistant wheat. Received: 17 May 2000 / Accepted: 13 June 2000  相似文献   

2.
Two dominant powdery mildew resistance genes introduced from Triticum carthlicum accession PS5 to common wheat were identified and tagged using microsatellite markers. The gene designated PmPS5A was placed on wheat chromosome 2AL and linked to the microsatellite marker Xgwm356 at a genetic distance of 10.2 cM. Based on the information of its origin, chromosome location, and reactions to 5 powdery mildew isolates, this gene could be a member of the complex Pm4 locus. The 2nd gene designated PmPS5B was located on wheat chromosome 2BL with 3 microsatellite markers mapping proximally to the gene: Xwmc317 at 1.1 cM; Xgwm111 at 2.2 cM; and Xgwm382 at 4.0 cM; and 1 marker, Xgwm526, mapping distally to the gene at a distance of 18.1 cM. Since this gene showed no linkage to the other 2 known powdery mildew resistance genes on wheat chromosome 2B, Pm6 and Pm26, we believe it is a novel powdery mildew resistance gene and propose to designate this gene as Pm33.  相似文献   

3.
Powdery mildew, caused by Erysiphe graminis DM f. sp. tritici (Em. Marchal), is one of the most important diseases of common wheat world-wide. Chinese wheat variety 'Fuzhuang 30' carries the powdery mildew resistance gene Pm5e and has proven to be a valuable resistance source of powdery mildew for wheat breeding. Microsatellite markers were employed to identify the gene Pm5e in a F(2) progeny from the cross 'Nongda 15' (susceptible) x 'Fuzhuang 30' (resistant). The gene Pm5e was mapped in the distal region of chromosome 7BL. Seven microsatellite markers were found to be linked to the gene Pm5e, of which two codominant markers Xgwm783 and Xgwm1267 were relatively close to Pm5e with a linkage distance of 11.0 cM and 6.6 cM, respectively. It is possible to use the 136-bp allele of Xgwm1267 in 'Fuzhuang 30' for marker-assisted selection during the wheat resistance breeding process for facilitation of gene pyramiding. The mapping information in the present study provides a starting point for fine mapping of the Pm5 locus and map-based cloning to clarify the molecular structure and function of the different alleles at the Pm5 locus. A microsatellite linkage map of chromosome 7B was constructed with 20 microsatellite loci, nine on the short arm and 11 on the long arm. This information will be very useful for further mapping of agronomically important genes of interest on chromosome 7B.  相似文献   

4.
The brittle rachis character, which causes spontaneous shattering of spikelets, has an adaptive value in wild grass species. The loci Br1 and Br2 in durum wheat (Triticum durum Desf.) and Br3 in hexaploid wheat (T. aestivum L.) determine disarticulation of rachides above the junction of the rachilla with the rachis such that a fragment of rachis is attached below each spikelet. Using microsatellite markers, the loci Br1, Br2 and Br3 were mapped on the homoeologous group 3 chromosomes. The Br2 locus was located on the short arm of chromosome 3A and linked with the centromeric marker, Xgwm32, at a distance of 13.3 cM. The Br3 locus was located on the short arm of chromosome 3B and linked with the centromeric marker, Xgwm72 (at a distance of 14.2 cM). The Br1 locus was located on the short arm of chromosome 3D. The distance of Br1 from the centromeric marker Xgdm72 was 25.3 cM. Mapping the Br1, Br2 and Br3 loci of the brittle rachis suggests the homoeologous origin of these 3 loci for brittle rachides. Since the genes for brittle rachis have been retained in the gene pool of durum wheat, the more closely linked markers with the brittle rachis locus are required to select against brittle rachis genotypes and then to avoid yield loss in improved cultivars.  相似文献   

5.
Leaf rust, caused by the fungus Puccinia triticina Eriks,is one of the most serious diseases of wheat (Triticum aestivum AABBDD, 2n=6x=42) worldwide. Growing resistant cultivars is an efficient and economical method of reducing losses to leaf rust. Here we report a new leaf rust resistance gene, Lr39, transferred from Aegilops tauschii into common wheat. Lr39 conditions both seedling and adult plant resistance to the leaf rust pathogen. The inter- and intra-chromosomal mapping of the Lr39 gene showed that it is different from all previously described Lr genes. We used monosomic analysis for the inter-chromosomal mapping and wheat microsatellite markers for the intra-chromosomal mapping. The monosomic and ditelosomic analysis indicated that Lr39 is independent of the centromere on the short arm of chromosome 2D. Eight microsatellite markers for 2DS were used for linkage analysis on a population of 57 F2 plants derived from a cross of an Ae. tauschii-derived wheat, cv. Wichita line TA4186 (possessing Lr39), with Wichita monosomics for the D-genome chromosomes. The microsatellite marker analysis confirmed the location of the gene on 2DS. Three markers were polymorphic and linked to the gene. The closest marker Xgwm210 mapped 10.7 cM from Lr39. The location of Lr39 near the telomere of 2DS distinguishes it from the Lr2 and Lr22 loci, which are located on 2DS proximal to Xgwm210. Received: 19 April 2000 / Accepted: 15 May 2000  相似文献   

6.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

7.
H32 is a newly identified gene that confers resistance to the highly pervasive Biotype L of the Hessian fly [ Mayetiola destructor (Say)]. The gene was identified in a synthetic amphihexaploid wheat, W-7984, that was constructed from the durum ‘Altar 84’ and Aegilops tauschii. This synthetic wheat is one of the parents of the marker-rich ITMI population, which consists of 150 recombinant inbred lines (RILs) derived by single-seed descent from a cross with ‘Opata 85’. Linkage analysis of the H32 locus in the ITMI population placed the gene between flanking microsatellite (SSR) markers, Xgwm3 and Xcfd223, at distances of 3.7 and 1.7 cM, respectively, on the long arm of chromosome 3D. The Xgwm3 primers amplified codominant SSR alleles, a 72 bp fragment linked in coupling to the resistance allele and an 84 bp fragment linked in repulsion. Primers for the SSR Xcfd223 amplified a 153 bp fragment from the resistant Synthetic parent and a 183 bp fragment from the susceptible Opata line. Deletion mapping of the flanking Xgwm3 and Xcfd223 markers located them within the 3DL-3 deletion on the distal 19% of the long arm of chromosome 3D. This location is at least 20 cM proximal to the reported 3DL location of H24, a gene that confers resistance to Biotype D of the Hessian fly. Tight linkage of the markers will provide a means of detecting H32 presence in marker-assisted selection and gene pyramiding as an effective strategy for extending durability of deployed resistance.  相似文献   

8.
The powdery mildew resistance has been transferred from an Israeli wild emmer (Triticum dicoccoides) accession "G-305-M" into common wheat by crossing and backcrossing (G-305-M/781//Jing 411*3). Genetic analysis showed that the resistance was controlled by a single dominant gene at the seedling stage. Among the 102 pairs of SSR primers tested, four polymorphic microsatellite markers (Xpsp3029, Xpsp3071, Xpsp3152 and Xgwm570) from the long arm of chromosome 6A were mapped in a BC(2)F(3) population segregating for powdery mildew resistance and consisting of 167 plants. The genetic distances between the resistance gene and these four markers were: 0.6 cM to Xpsp3029, 3.1 cM to Xpsp3071, 11.2 cM to Xpsp3152 and 20.4 cM to Xgwm570, respectively. The order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 6AL. We concluded that the resistance gene was located on the long arm of chromosome 6AL. Based on the origin and chromosomal location of the gene, it is suggested that the resistance gene derived from "G-305-M" is a novel powdery mildew resistance gene and is temporarily designated MlG.  相似文献   

9.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

10.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most serious wheat diseases. The rapid evolution of the pathogen's virulence, due to the heavy use of resistance genes, necessitates the expansion of resistance gene diversity. The common wheat line D57 is highly resistant to powdery mildew. A genetic analysis using an F(2) population derived from the cross of D57 with the susceptible cultivar Yangmai 158 and the derived F(2:3) lines indicated that D57 carries two dominant powdery mildew resistance genes. Based on mapping information of polymorphic markers identified by bulk segregant analysis, these two genes were assigned to chromosomes 5DS and 6DS. Using the F(2:3) lines that segregated in a single-gene mode, closely linked PCR-based markers were identified for both genes, and their chromosome assignments were confirmed through linkage mapping. The gene on chromosome 5DS was flanked by Xgwm205 and Xmag6176, with a genetic distance of 8.3 cM and 2.8 cM, respectively. This gene was 3.3 cM from a locus mapped by the STS marker MAG6137, converted from the RFLP marker BCD1871, which was 3.5 cM from Pm2. An evaluation with 15 pathogen isolates indicated that this gene and Pm2 were similar in their resistance spectra. The gene on chromosome 6DS was flanked by co-segregating Xcfd80 and Xmag6139 on one side and Xmag6140 on the other, with a genetic distance of 0.7 cM and 2.7 cM, respectively. This is the first powdery mildew resistance gene identified on chromosome 6DS, and plants that carried this gene were highly resistant to all of the 15 tested pathogen isolates. This gene was designated Pm45. The new resistance gene in D57 could easily be transferred to elite cultivars due to its common wheat origin and the availability of closely linked molecular markers.  相似文献   

11.
Peng JH  Bai Y  Haley SD  Lapitan NL 《Genetica》2009,135(1):95-122
Genetic diversity of a set of 71 wheat accessions, including 53 biotype 2 Russian wheat aphid (RWA2)-resistant landraces and 18 RWA2 susceptible accessions, was assessed by examining molecular variation at multiple microsatellite (SSR) loci. Fifty-one wheat SSR primer pairs were used, 81 SSR loci were determined, and 545 SSR alleles were detected. These SSR loci covered all the three genomes, 21 chromosomes, and at least 41 of the 42 chromosome arms. Diversity values averaged over SSR loci were high with mean number of SSR alleles/locus = 6.7, mean Shannon’s index (H) = 1.291, and mean Nei’s gene diversity (He) = 0.609. The three wheat genomes ranked as A > D > B and the homoeologous groups ranked as 7 > 3  > 1 > 2 > 6 > 5 > 4 based on the number of alleles per locus. Xgwm136 on chromosome arm 1AS is the most polymorphic SSR locus with the largest number of observed and effective alleles and the highest H and He. Among all 2485 pairs of wheat accessions, genetic distance (GD) ranged from 0.054 to 1.933 and averaged 0.9832. A dendrogram based on GD matrix showed that all the wheat accessions could be grouped into distinct clusters. Most of the susceptible cultivars (13/18) were clustered into groups that contains all or mostly susceptible accessions. Most of the U.S. cultivars belong to a group that is distinguishable from all the different RWA2 resistant groups. Diversity analysis was also conducted separately for subgroups containing 53 RWA2-resistant accessions and 18 RWA2-susceptible accessions. Association mapping revealed 28 SSR loci significantly associated with leaf chlorosis, and 8 with leaf rolling. New chromosome regions associated with RWA2 resistance were detected, and indicated existence of new RWA resistance genes located on chromosomes of all other homoeologous groups in addition to the groups 1 and 7 in bread wheat. This information is helpful for development of mapping populations for RWA2 resistance genes from different phylogenetic groups, and for wise utilization of the RWA-resistant germplasm in wheat breeding programs.  相似文献   

12.
刘方慧  牛永春  邓晖  檀根甲 《遗传学报》2007,34(12):1123-1130
小麦农家品种赤壳(苏1900)对当前我国小麦条锈菌(Puccinia striiformis Westend.f.sp.tritici)多个流行小种均有较好抗性。遗传分析表明,该品种对条中32号小种的抗性是由一对显性基因控制。本文采用分离群体分析法(bulked segregant analysis,BSA)和微卫星多态性分析方法,对该基因进行了分子标记和定位研究。用Taichung29×赤壳的F2代分离群体建立抗、感DNA池,共筛选了400多对SSR引物,发现5个标记Xwmc44、Xgwm259、Xwmc367、Xcfa2292、Xbarc80在抗、感DNA池间与在抗、感亲本间同样具有多态性,它们均位于1BL染色体臂上。经用具有140株抗病株、60株感病株共200株植株的F2代分离群体进行的遗传连锁性检测,上述5个标记均与目的基因相连锁,遗传距离分别为8.3cM、9.1cM、17.2cM、20.6cM和31.6cM。用全套21个中国春缺-四体材料进行的检测进一步证实了这5个SSR标记均位于小麦1B染色体上。综合上述结果,将赤壳中的主效抗条锈病基因YrChk定位在1BL染色体臂上。与以前已定位于1B染色体上的抗条锈病基因的比较研究表明,YrChk基因可能是一个新的抗条锈病基因。小麦农家品种中抗病基因资源的发掘和利用将有助于提高我国小麦生产品种中的抗病基因丰富度,有助于改善长期以来小麦生产品种中抗病基因单一化的局面。  相似文献   

13.
Huang XQ  Röder MS 《Genetica》2011,139(9):1179-1187
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F2 and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the ‘1S0.8 gene-rich region’, a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.  相似文献   

14.
从小麦野生近缘属——粗山羊草中挖掘小麦条锈病抗病基因, 拓展小麦抗病性的遗传基础。利用抗小麦条锈病与感小麦条锈病的粗山羊草间杂交, 从粗山羊草[Aegilops tauschii (Coss.) Schmal] Y206中鉴定出1个显性抗小麦条锈病基因, 暂定名为YrY206。应用分离群体分组法(Bulked segregant analysis, BSA)筛选到Wmc11a、Xgwm71c、Xgwm161和Xgwm183标记, 与该基因之间的遗传距离分别为4.0、3.3、1.5和9.3 cM。根据连锁标记所在小麦微卫星图谱的位置, YrY206被定位在3DS染色体上。分析基因所在染色体的位置、抗病性特征, 认为YrY206是一个新的抗小麦条锈病基因。  相似文献   

15.
The S1, S2 and S3 genes of the induced sphaerococcoid mutation in common wheat (Triticum aestivum) were mapped using three different F2 populations consisting of 71–96 individual plants. Twenty-four microsatellite markers from homeologous group 3 of T. aestivum were used to map the S1, S2 and S3 genes on chromosomes 3D, 3B and 3A, respectively. The S1 locus was found to be closely linked to the centromeric marker Xgwm456 of the long arm (2.9 cM) and mapped not far (8.0 cM) from the Xgdm72 marker of the short arm of chromosome 3D. The S2 gene was tightly linked to 2 centromeric markers (Xgwm566, Xgwm845) of chromosome 3B. S3 was located between Xgwm2 (5.1 cM), the marker of the short arm, and Xgwm720 (6.6 cM), the marker of the long arm, both of chromosome 3A. Mapping the S1, S2 and S3 loci of the induced sphaerococcoid mutation near the centromeric regions supports the hypothesis that the sphaerococcum type may be due to gene duplication resulting from DNA recombination in the centromeric region. Received: 20 June 1999 / Accepted: 29 July 1999  相似文献   

16.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

17.
Wheat yellow mosaic disease, which is caused by wheat yellow mosaic bymovirus (WYMV) and transmitted by soil-borne fungus, results in severe damage on wheat (Triticum aestivum L.) production in China. For development of resistant cultivars to reduce wheat yield losses due to wheat yellow mosaic disease, resistance test and genetic analysis indicated that a single dominant gene in wheat cultivar Yangfu 9311 contributed to the resistance. Bulk segregant analysis was used to identify microsatellite markers linked to the resistance gene in an F2 population derived from the cross Yangfu 9311 (resistant) × Yangmai 10 (susceptible). Microsatellite markers Xwmc41, Xwmc181, Xpsp3039, and Xgwm349 were co-dominantly or dominantly linked with the gene responsible for WYMV resistance at a distance of 8.1–11.6 cM. Based on the wheat microsatellite consensus map and the results from amplification of the cultivar Chinese Spring nulli-tetrasomic stocks, the resistance gene to wheat yellow mosaic disease derived from Yangfu 9311, temporarily named as YmYF, was thus mapped on the long arm of chromosome 2D (2DL).  相似文献   

18.
Molecular markers were identified in common wheat for the Pm24 locus conferring resistance to different isolates of the powdery mildew pathogen, Erysiphe graminis DM f. sp. tritici (Em. Marchal). Bulked segregant analysis was used to identify amplified fragment length polymorphism (AFLP) markers and microsatellite markers linked to the gene Pm24 in an F2 progeny from the cross Chinese Spring (susceptible)× Chiyacao (resistant). Two AFLP markers XACA/CTA-407 and XACA/CCG-420, and three microsatellite markers Xgwm106, Xgwm337 and Xgwm458, were mapped in coupling phase to the Pm24 locus. The AFLP marker locus XACA/CTA-407 co-segregated with the Pm24 gene, and XACA/CCG-420 mapped 4.5 cM from this gene. Another AFLP marker locus XAAT/CCA-346 co- segregated in repulsion phase with the Pm24 locus. Pm24 was mapped close to the centromere on the short arm of chromosome 1D, contrary to the previously reported location on chromosome 6D. Pm24 segregated independently of gene Pm22, also located on chromosome 1D. An allele of microsatellite locus Xgwm337 located 2.4±1.2 cM from Pm24 was shown to be diagnostic and therefore potentially useful for pyramiding two or more genes for powdery mildew resistance in a single genotype. Received: 25 August 1999 / Accepted: 16 December 1999  相似文献   

19.
Leaf rust resistance gene Lr28 has been transferred form Aegilops speltoides into bread wheat on chromosome 4AL. To identify the molecular markers linked to Lr28 the available microsatellite markers for wheat chromosome arm 4AL were surveyed on near isogenic lines (NILs) of Triticum aestivum cultivars having Lr28 gene, other Lrgenes and susceptible cultivars. A null allele of Xgwm 160 marker was found to be associated with Lr28. Linkage between the marker and the Lr28 resistance gene was confirmed using F2 mapping population of cross PBW343 and HD2329 + Lr28.  相似文献   

20.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However, its chromosomal location and allelic relationships to most other STB genes are not known, so the molecular mapping of Stb1 is of great interest. Genetic analyses and molecular mapping were performed for two mapping populations. A total of 148 F1 plants (mapping population I) were derived from a three-way cross between the resistant line P881072-75-1 and the susceptible lines P881072-75-2 and Monon, and 106 F6 recombinant-inbred lines (mapping population II) were developed from a cross between the resistant line 72626E2-12-9-1 and the susceptible cultivar Arthur. Bulked-segregant analysis with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microsatellite or simple-sequence repeat (SSR) markers was conducted to identify those that were putatively linked to the Stb1 gene. Segregation analyses confirmed that a single dominant gene controls the resistance to M. graminicola in each mapping population. Two RAPD markers, G71200 and H19520, were tightly linked to Stb1 in wheat line P881072-75-1 at distances of less than 0.68 cM and 1.4 cM, respectively. In mapping population II, the most closely linked marker was SSR Xbarc74, which was 2.8 cM proximal to Stb1 on chromosome 5BL. Microsatellite loci Xgwm335 and Xgwm213 also were proximal to Stb1 at distances of 7.4 cM and 8.3 cM, respectively. The flanking AFLP marker, EcoRI-AGC/MseI-CTA-1, was 8.4 cM distal to Stb1. The two RAPD markers, G71200 and H19520, and AFLP EcoRI-AGC/MseI-CTA-1, were cloned and sequenced for conversion into sequence-characterized amplified region (SCAR) markers. Only RAPD allele H19520 could be converted successfully, and none of the SCAR markers was diagnostic for the Stb1 locus. Analysis of SSR and the original RAPD primers on several 5BL deletion stocks positioned the Stb1 locus in the region delineated by chromosome breakpoints at fraction lengths 0.59 and 0.75. The molecular markers tightly linked to Stb1 could be useful for marker-assisted selection and for pyramiding of Stb1 with other genes for resistance to M. graminicola in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号