首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Notothenia neglecta was exposed to diluted, half strength, sea water for 6 h or 10 days, serum concentrations of Cl-, Na+, K+ and Mg2+ did not differ from those of sea water controls. This indicates that the fish were capable of both short- and long-term regulation. Renal Na+,K+-ATPase activity decreased after a 6 h exposure to diluted sea water, but there were no differences between diluted sea water and controls after 10 days of exposure.  相似文献   

2.
Isotopic labelling experiments were conducted to assess relationships among 13C of recently assimilated carbon ( δC A), foliage respiration ( δC F), soluble carbohydrate ( δC SC), leaf waxes ( δC LW) and bulk organic matter ( δC OM). Slash pine, sweetgum and maize were grown under 13C depleted CO2 to label biomass and then placed under ambient conditions to monitor the loss of label. In pine and sweetgum, δC F of labelled plants (∼−44 and −35‰, respectively) rapidly approached control values but remained depleted by ∼4–6‰ after 3–4 months. For these tree species, no or minimal label was lost from δC SC, δC LW and δC OM during the observation periods. δC F and δC SC of labelled maize plants rapidly changed and were indistinguishable from controls after 1 month, while δC LW and δC OM more slowly approached control values and remained depleted by 2–6‰. Changes in δC F in slash pine and sweetgum fit a two-pool exponential model, with the fast turnover metabolic pool (∼3–4 d half-life) constituting only 1–2% of the total. In maize, change in δC F fits a single pool model with a half-life of 6.4 d. The 13C of foliage respiration and biochemical pools reflect temporally integrated values of δC A, with change in isotopic composition dampened by the size of metabolic carbon reserves and turnover rates.  相似文献   

3.
The major β-1,4-endoglucanase (EG) of the thermophilic actinomycete, Thermomonospora curvata , contributed over 80% of the total EG activity recovered from cell-free culture fluid after growth on cellulose. The enzyme was purified to electrophoretic homogeneity by ammonium sulphate precipitation, ion-exchange chromatography and size exclusion HPLC. This monomeric enzyme had a specific activity of 750 IU mg−1 when assayed with 2.5% (w/v) carboxymethyl cellulose (CMC) at 70°C, pH 6.0. Highest activity was observed on CMC with a degree of polymerization of 3200. The EG was stable for 48 h at 60°C, pH 6.0 and had a half-life of 30 min at 80°C; temperature and pH optima were 70–73°C and 6.0–6.5, respectively. The mol. wt was 100000 and the pI was 4.0. The K m and V max values were 7.33 mg ml−1 and 833 μmol min−1, respectively. EG activity was inhibited by Fe2 +, Hg2 +, Ag+ and Pb2 +, and enhanced by dithiothreitol and Zn2 +. The first 12 amino acid residues at the N -terminus were: Asp-Glu-Val-Asp-Glu-Ile-Arg-Asn-Gly-Asp-Phe-Ser. Glutamic and aspartic acid constituted 24% of the total amino acid composition; no amino sugar was found.  相似文献   

4.
Abstract. The uptake and accumulation of inorganic carbon has been investigated in Chlorella ellipsoidea cells grown at acid or alkaline pH. Carbonic anhydrase (CA) was detected in ceil extracts but not in intact cells and CA activity in acid-grown cells was considerably less than that in alkali-grown cells. Both cell types demonstrates low K1/2 (CO2) values in the range pH 7.0–8.0 and these were unaffected by O2 concentration. The CO2 compensation concentrations of acid- and alkali-grown cells suspended in aqueous media were not significantly different in the range of pH 6.0–8.0, but at pH 5.0, the CO2 compensation concentrations of acid-grown cells (57.4cm3 m−3) were lower than those of alkali-grown cells (79.2cm3 m−3). The rate of photo-synthetic O2 evolution in the range pH 7.5–8.0 exceeded the calculated rate of CO2 supply two- to three-fold, in both acid- and alkali-grown cells, indicating that HCO3 was taken up by the cells. Accumulation of inorganic carbon was measured at pH 7.5 by silicone-oil centri-fugation, and the concentration of unfixed inorganic carbon was found to be 5.1 mol m−3 in acid-grown and 6.4mol m−3 in alkali-grown cells. These concentrations were 4.6- and 5.9-fold greater than in the external medium. These results indicate that photorespiration is suppressed in both acid- and alkali-grown cells by an intracellular accumulation of inorganic carbon due, in part, to an active uptake of bicarbonate.  相似文献   

5.
Abstract: Spinal cord tissue pH was measured in cats at normocapnia, hypocapnia, hypercapnia and death from anoxia using a pH-sensitive fluorescent indicator (umbelliferone) with both molecular and ionic fluorophors. A ratio analysis of the indicator's calibrated 450 nm fluorescent tissue clearance curves from 340 and 370 nm excitation permitted direct in vivo tissue pH determinations. Fifteen animals were divided into three equal groups according to different arterial carbon dioxide tensions (Pa co2):five animals at Pa co2 20, five animals Pa co2 40 and five animals Pa co2 60 torr. Spinal cord tissue pH varied linearly with arterial pH, but within narrower limits. These values (arterial versus cord pH) were: 7.46 versus 7.15; 7.21, 7.09; and 7.04, 7.00. At death from hypoxemia the arterial pH fell to 6.99 and spinal cord to 6.67. The clearance curves of umbelliferone in spinal cord varied according to Pa co2 and appeared to reflect spinal cord blood flow.  相似文献   

6.
Rainbow trout Oncorhynchus mykiss were exposed acutely to chloramine-T at a therapeutic concentration (9mg l−1) under moderately hypoxic (water P o2: l00 mmHg) or hyperoxic (water P o2: 430mmHg) conditions and arterial blood gas tensions ( P ao2 and P aco2) and pH were monitored using an extracorporeal circulation. Hypoxia, alone, resulted in an increased ventilation frequency, a decrease in both arterial P co2 and P o2 and an increase in arterial pH. There was no effect of chloramine-T exposure on the measured variables as compared with pre-exposure (hypoxia baseline) values. Hyperoxia, alone, resulted in a decrease in ventilation frequency, an increase in arterial P co2 and P o2, and a decrease in arterial pH. Chloramine-T exposure under these conditions caused a significant increase in ventilation frequency, but no significant effect on arterial blood gases or pH as compared with the hyperoxia baseline values. Despite the increase in ventilation caused by chloramine-T during hyperoxia, there was no reduction in P co2 or increase in P o2. Although these results were of little pathological significance, this study suggests that chloramine-T, although stimulating ventilation, was impairing the diffusion of co2 across the gill probably by the secretion of branchial mucus and enhancing the gill boundary layer.  相似文献   

7.
The combined effects of pH, water activity (aw), oxygen (O2) and carbon dioxide (CO2) levels on growth and sporulation of 10common food-borne fungi were studied. The use of a multivariate statistical method (PLS) for the analysis of data showed that the fungi could be grouped according to their physiological response to changes in the four tested factors. Carbon dioxide, aw and pH were found to be the most significant factors describing differences and similarities among the fungi. Maximal inhibitory effect of elevated levels of CO2 (5–25%) and decreased aw (0·99–0·95) varied among the 10 species from 6 to 77% and from 52 to 100%, respectively. Sporulation of the fungi was sensitive to all tested factors. Furthermore, interaction of CO2 and aw displayed a significant effect on sporulation. It was shown that different fungal species associated with the same ecosystem responded similarly to changes in the tested factors. Thus, fungi which are not phylogenetically related may be physiologically related or show a common strategy of life.  相似文献   

8.
Soils contain two different activities for oxidation of hydrogen   总被引:1,自引:0,他引:1  
Abstract Hydrogen oxidation rates were measured in a neutral compost soil and an acidic sandy loam at H2 mixing ratios of 0.01 to 5000 ppmv. The kinetics were biphasic showing two different K m values for H2, one at about 10–40 nM dissolved H2, the other at about 1.2–1.4 μM H2. The low- K m activity was less sensitive to chloroform fumigation than the high- K m activity. If sterile soil was amended with Paracoccus denitrificans or a H2-oxidizing strain isolated from compost soil, it exhibited only a high- K m (0.7–0.9 μM) activity. It also failed to utilize H2 mixing ratios below a threshold of 1.6–3.0 ppmv H2 (160–300 mPa). A similar result was obtained when fresh soil samples were suspended in water, and H2 oxidation was determined from the decrease of dissolved H2. However, H2 was again utilized to mixing ratios lower than 0.05 ppmv, if the supernatant of the soil suspension or the settled soil particles were dried onto sterile soil or purified quarz sand. Obviously, soils contain two different activities for oxidation of H2: (1) a high- K m, high-threshold activity which apparently is due to aerobic H2-oxidizing bacteria, and (2) a low- K m, low-threshold activity whose origin is unknown but presumably is due to soil enzymes.  相似文献   

9.
Diel variations in carbonate incorporation into otoliths in goldfish   总被引:1,自引:0,他引:1  
When D-[14C-U]-glucose was administered intraperitoneally into goldfish Carassius amatus at 20° C and 12L: 12D (dark period 1800–0600 hours) at 0600, 1200, 1800, 2400 and 0600 hours on the following day, glucose was metabolized to release 14CO2 and then it was incorporated into otoliths as carbonate. The rate of metabolic activity, judging from the ratio of inorganic to organic radiocarbon in plasma, was low during the dark period. Carbon incorporation into otoliths was also minimized during 1800–2400 h. When fish were exposed to ambient water containing NaH14CO3, plasma radioactivity was lowest during 1800–2400 hours, during which time carbon incorporation into otoliths was lowest. Plasma total CO2 levels markedly increased during the dark period. These results clearly indicate that carbonate formation in otoliths has a diel variation with a nadir lasting 6 h from 1800 to 2400 hours under the photoperiod used.  相似文献   

10.
Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS2) oxidation. This community grows in stalactite-like structures – snottites – on the ceiling of an abandoned pyrite mine at pH values of 2.2–2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H3O)Fe3(SO4)2(OH)6] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.  相似文献   

11.
Uptake regions of inorganic nitrogen in roots of carob seedlings   总被引:2,自引:0,他引:2  
Three-week-old seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were grown for 9 weeks under different root temperatures (20, 30 and 40°C) at pH values of 5, 7 and 9 with nitrate or ammonium as nitrogen source. Nitrogen uptake rates were determined by depletion from the medium and decreased with distance from the apex. The decline of nitrogen uptake rates along the roots depended on the form of inorganic nitrogen in the medium as well as on pH and temperature, such that the NO3 and NH+4 ions were taken up essentially by the root tips (0–2 cm) through processes requiring energy. The uncharged NH3 species entered passively, through the mature parts of the root (2–10 cm). Root zone temperature and pH affect the NH+4/NH3 equilibrium in the nutrient solution and, consequently, the uptake areas of the root for these ions. Furthermore. while root tip uptake of nitrogen is energy dependent, uptake through mature root areas is essentially passive and seems to depend on a well developed apparent free space.  相似文献   

12.
Hypoxic pretreatment is known to induce anoxia tolerance in plant species sensitive to oxygen deprivation. However, we still do not have detailed information on changes in cytoplasmic and vacuolar pH (pHcyt and pHvac) in plants under low-oxygen availability (hypoxia) and under anoxia. To investigate this, we have studied the influence of hypoxia and anoxia on pHcyt and pHvac, glucose-6-phosphate (Glc-6-P) and nucleotide triphosphate (NTP) contents in rice ( Oryza sativa L.) root tips in comparison with those of wheat ( Triticum aestivum L.) with in vivo 31P-nuclear magnetic resonance. Both cereals responded to hypoxia similarly, by rapid cytoplasmic acidification (from pH 7.6–7.7 to 7.1), which was followed by slow partial recovery (0.3 units after 6 h). Anoxia led to a dramatic pHcyt drop in tissues of both species (from pH 7.6–7.7 to less than 7.0) and partial recovery took place in rice only. In wheat, the acidification continued to pH 6.8 after 6 h of exposure. In both plants, NTP content followed the dynamics of pHcyt. There was a strong correlation between NTP content and cytoplasmic H+ activity ([H+]cyt= 10−pHcyt) for both hypoxic and anoxic conditions. Glc-6-P content increased in rice under anoxia and hypoxia. In wheat, Glc-6-P was not detectable under anoxia but increased under hypoxia. In this study, rice root tips were shown to behave as anoxia tolerant tissues. Our results suggest that the initial cytoplasmic acidification and subsequent pHcyt are differently regulated in anoxia tolerant and intolerant plants and depend on the external oxygen concentration.  相似文献   

13.
Root elongation in wheat seedlings ( Triticum aestivum L. cv. Atlas 66) was inhibited by micromolar activities of SeO42–. SeO42– inhibition was enhanced by supplementation of the rooting medium with CaCl2, MgCl2, SrCl2, or the reduction of pH. These solute treatments, as well as the addition of tris (ethylenediamine)cobalt3+, enhanced the uptake of Se by the roots. The results are interpreted to reflect an elevated PM-surface activity of SeO42– caused by solute-induced reductions of plasma membrane (PM) surface negativity. (PM-surface electrical potential is sometimes measured electrophoretically as the zeta potential.) This study complements an extensive literature documenting the suitability of an electrostatic model (Gouy-Chapman-Stern), based almost entirely upon experiments with cations rather than anions. The close correspondence among uptake, intoxication, and model-computed SeO42– activity at the PM surface adds credibility to the model and its evaluated parameters. The model may be useful for the interpretation of other plant-anion interactions, and phosphate and sulphate nutrition in acidic soils are considered as examples.  相似文献   

14.
Availability, uptake and turnover of glycerol in hypersaline environments   总被引:4,自引:0,他引:4  
Abstract A sensitive assay for glycerol and other polyols was developed, based on periodate oxidation to formaldehyde, followed by a colorimetric assay with 3-methyl-2-benzothiazolone hydrazone. Apparent glycerol concentrations thus measured in saltern crystallizer ponds were around 20–36 μM, while in the Dead Sea, during a Dunaliella bloom, values were up to 27 μM. However, these values probably overestimate the glycerol concentrations present, as shown by labeled glycerol uptake experiments. Values of [K + Sn] (natural concentration + affinity constant) in saltern ponds were as low as 0.76–1.4 μM, with Vmax values of 193–303 nmol 1−1h−1, and turnover times between 2.6–7.2 h at 35°C. Similar measurements in the Dead Sea were: [K + Sn] 0.07–1.41 μM, Vmax values 160–426 nmol 1−1h−1, and turnover times in the range of 0.45–3.3 h.  相似文献   

15.
Inorganic carbon limitation of photosynthesis in lake phytoplankton   总被引:5,自引:0,他引:5  
1. Inorganic carbon availability influences species composition of phytoplankton in acidic and highly alkaline lakes, whereas the overall influence on community photosynthesis and growth is subject to debate.
2. The influence of total dissolved inorganic carbon (DIC) and free CO2 on community photosynthesis was studied in six Danish lakes during the summer of 1995. The lakes were selected to ensure a wide range of chlorophyll a concentrations (1–120 μg l–1), pH (5.6–9.6) and DIC concentration (0.02–2.5 m m ). Photosynthesis experiments were performed using the 14C technique in CO2-manipulated water samples, either by changing the pH or by adding/removing CO2.
3. Lake waters were naturally CO2 supersaturated during most of the experimental period and inorganic carbon limitation of photosynthetic rates did not occur under ambient conditions. However, photosynthesis by phytoplankton in lakes with low and intermediate DIC concentrations was seriously restricted when CO2 concentrations declined. Similarly, photosynthesis was limited by low CO2 concentrations during phytoplankton blooms in the hardwater alkaline lakes.  相似文献   

16.
The effect of long-term exposure to different inorganic carbon, nutrient and light regimes on CAM activity and photosynthetic performance in the submerged aquatic plant, Littorella uniflora (L.) Aschers was investigated. The potential CAM activity of Littorella was highly plastic and was reduced upon exposure to low light intensities (43 μmol m−2 s−1), high CO2 concentrations (5.5 mM, pH 6.0) or low levels of inorganic nutrients, which caused a 25–80% decline in the potential maximum CAM activity relative to the activity in the control experiments (light: 450 μmol m−2 s−1; free CO2: 1.5 mM). The CAM activity was regulated more by light than by CO2, while nutrient levels only affected the activity to a minor extent. The minor effect of low nutrient regimes may be due to a general adaptation of isoetid species to low nutrient levels.
The photosynthetic capacity and CO2 affinity was unaffected or increased by exposure to low CO2, irrespective of nutrient levels. High CO2, low nutrient and low light, however, reduced the capacity by 22–40% and the CO2 affinity by 35-45%, relative to control.
The parallel effect of growth conditions on CAM activity and photosynthetic performance of Littorella suggest that light and dark carbon assimilation are interrelated and constitute an integrated part of the carbon assimilation physiology of the plant. The results are consistent with the hypothesis that CAM is a carbon-conserving mechanism in certain aquatic plants. The investment in the CAM enzyme system is beneficial to the plants during growth at high light and low CO2 conditions.  相似文献   

17.
In this study, we investigated whether disruption of Na+ and Ca2+ homeostasis via activation of Na+-K+-Cl cotransporter isoform 1 (NKCC1) and reversal of Na+/Ca2+ exchange (NCXrev) affects protein aggregation and degradation following oxygen–glucose deprivation (OGD). Cultured cortical neurons were subjected to 2 h OGD and 1–24 h reoxygenation (REOX). Redistribution of ubiquitin and formation of ubiquitin-conjugated protein aggregates occurred in neurons as early as 2 h REOX. The protein aggregation progressed further by 8 h REOX. There was no significant recovery at 24 h REOX. Moreover, the proteasome activity in neurons was inhibited by 80–90% during 2–8 h REOX and recovered partially at 24 h REOX. Interestingly, pharmacological inhibition or genetic ablation of NKCC1 activity significantly decreased accumulation of ubiquitin-conjugated protein aggregates and improved proteasome activity. A similar protective effect was obtained by blocking NCXrev activity. Inhibition of NKCC1 activity also preserved intracellular ATP and Na+ homeostasis during 0–24 h REOX. In a positive control study, disruption of endoplasmic reticulum Ca2+ with thapsigargin triggered redistribution of free ubiquitin and protein aggregation. We conclude that overstimulation of NKCC1 and NCXrev following OGD/REOX partially contributes to protein aggregation and proteasome dysfunction as a result of ionic dysregulation.  相似文献   

18.
Location of tyrosine phenol-lyase in some Gram-negative bacteria   总被引:2,自引:0,他引:2  
Abstract From various habitats (plant material, fruits, soil), yeasts belonging to the species of Pichia kluyveri and Hanseniaspora uvarum were isolated that showed killer activity. According to the activity spectrum against other yeasts these strains belonged to 11 different groups that were distinguishable from the killer strains K1-K10. The isoelectric points of the killer proteins were in the range of pH 3.5–3.9, the activity optimum was observed at pH 4.2–4.6. Above pH 5 and above a temperature of 25–35°C the killer proteins were inactivated.  相似文献   

19.
Germinating seeds of many species contain two types of β-cyanoalanine synthase (CAS, EC 4.4.1.9) that convert HCN to β-cyanoalanine. One is cytoplasmic CAS (cyt-CAS), which is precipitated by 50 to 60% (NH4)2SO4 and has a pH optimum of 10.5. Cytoplasmic CAS is present at high levels in dry seed and its activity does not increase during imbibition. The activity of cyt-CAS is not affected by exogenously applied ethylene (C2H4), except in rice ( Oryza sativa cv. Sasanishiki). The second type of CAS found in seed is mitochondrial CAS (mit-CAS), which is precipitated by 60 to 70% (NH4)2SO4 and has a pH optimum of 9.5. Mitochondrial CAS is present at low levels in dry seed, and its activity increases greatly during imbibition in the seeds of all species tested. Exposure to C2H4 stimulated mit-CAS activity in seeds of rice, barley ( Hordeum vulgare cv. Hadakamugi). cucumber ( Cucumis sativus cv. Kagafushinari) and cocklebur ( Xanthium pennsylvanicum ). The increase in the mit-CAS activity in cocklebur in response to C2H4 commenced alter a lag period of 2 to 3 h when the duration of soaking was short (16 h), but commenced without a lag period when the seeds were soaked for three months. Application of both chloramphenicol and cycloheximide to the axial and cotyledonary tissues of cocklebur seeds strongly inhibited growth as well as the increase in mit-CAS activity. It is postulated that the mit-CAS is synthesized de novo during imbibition and that its activity is regulated by C2H4, CO2 which also promotes seed germination in some species, was ineffective m stimulating mit-CAS activity in cocklebur seeds.  相似文献   

20.
Flounders Pleuronectes flesus with an implanted vascular catheter were exposed to a 50% dilution of the water soluble fraction (WSF) of Omani crude oil (c. 6ppm total aromatic hydrocarbons) and serial blood samples taken to determine their endocrine status (cortisol, catecholamines and thyroid hormones) and the resultant and/or causal physiological (haematological, ionoregulatory and respiratory) disturbances. This resulted in a progressive increase in plasma cortisol concentrations from 3 h onwards (rising from 18 to 51 ng ml−1 after 48-h exposure), and increased plasma glucose concentrations indicating a generalized stress response. Plasma T3 and T4 concentrations of both control and WSF-exposed groups declined progressively over the experimental period; exposure to the WSF of crude oil further depressed plasma T4 concentrations but not plasma T3 concentrations relative to those of control fish. Plasma osmolality and sodium and chloride concentrations were stable in WSF-exposed fish, however, plasma potassium concentrations were increased significantly at the 24-and 48-h sampling points. The most profound physiological disturbance in WSF-exposed fish was a dramatic decline in blood oxygen content (CvO2) (from 2–8 to 0–8 ml 100 ml−1 after 48-h exposure), which is likely to be the cause of the increased plasma noradrenaline concentrations from 3 h onwards. Increased noradrenaline is likely in turn to have been responsible for the significant increase in blood haematocrit and blood haemoglobin at the 3-h sampling point, although the dominant effect in the longer-term was a significant decline in both of these haematological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号