首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shared features between plant and animal programmed cell death are becoming increasingly apparent. In this study, human Bcl-2, an anti-apoptotic member of the Bcl-2 family of cell death regulators, was stably expressed in tobacco. Previously, we have shown that such plants were resistant/tolerant to several necrotrophic fungal pathogens. In this study, we show that transgenic plants are protected by several lethal abiotic stresses including heat, cold, menadione and hydrogen peroxide. Importantly, wild type tobacco, exposed to these treatments, not only died but during the death process exhibited features associated with mammalian apoptosis including DNA laddering, fragmentation, and the development of apoptotic bodies. These features were not observed in viable transgenic tobacco. Thus, abiotic stress induced cell death in plants can be accompanied by apoptotic-like features that are inhibited by expression of Bcl-2. These observations add to the growing body of evidence indicating trans-kingdom conservation of programmed cell death mechanisms.  相似文献   

2.
Treatment of Taxus chinensis cell suspension cultures with fungal elicitor resulted in an oxidative stress characterized by H2O2 production, malondiadehyde (MDA) accumulation and cell death. This oxidative stress was dependent on the concentration of elicitor. Cells exposed to elicitor accumulated taxol, however, not proportional to elicitor concentration. High production of taxol occurred in cells treated with the suitable elicitor concentration. We concluded that oxidative stress had the deleterious effect on taxol production. Simultaneous treatment with elicitor and ascorbic acid (ASA) changed the oxidative stress and taxol production. Production of taxol in cells treated with 200 mg dm–3 elicitor and ASA was enhanced compared with that in cells treated with only 200 mg dm–3 elicitor, while production of taxol in cells treated with 100 and 50 mg dm–3 elicitor and ASA was decreased compared with that in cells treated with 100 and 50 mg dm–3 elicitor.  相似文献   

3.
盐分胁迫是植物在自然环境中经常遭遇的环境胁迫因素之一,会引起植物代谢紊乱乃至细胞死亡,这严重限制了植物的生长、繁育和生存。交替呼吸途径是植物较之动物独特的线粒体呼吸途径。该研究在烟草悬浮细胞中调查了交替呼吸途径对Na Cl胁迫引起的植物细胞死亡过程的调节作用及相应的内在机制,以及在200 mmol·L~(-1)Na Cl处理的烟草悬浮细胞中研究了交替呼吸途径和细胞死亡发生及H_2O_2之间的关系。结果表明:(1)随着Na Cl处理浓度的增加,烟草悬浮细胞死亡水平逐渐增加,而交替呼吸途径的容量也逐渐上升。(2)与Na Cl处理相似,外源H_2O_2的处理也能导致烟草悬浮细胞死亡水平的增加。200 mmol·L~(-1)Na Cl的胁迫导致明显的细胞死亡发生和H_2O_2产量的显著性增加;而较之200 mmol·L~(-1)Na Cl胁迫下的细胞,用水杨基氧肟酸(交替呼吸途径的抑制剂)预处理后的细胞再置于200 mmol·L~(-1)Na Cl的胁迫下导致更高水平的细胞死亡和H_2O_2的产生。综上表明,高盐胁迫诱导了烟草悬浮细胞的交替呼吸途径的增加,而交替呼吸途径则可能通过抑制活性氧的产生而起到缓解细胞死亡发生的作用。  相似文献   

4.
利用药理学方法,研究了烟草寄生疫霉(Phytophthora parasitica)分泌的蛋白激发子ParA1诱导烟草悬浮细胞后,磷脂酶D对ParA1诱导的过敏细胞死亡和其它防卫反应的影响.用100nmol/LParA1处理烟草悬浮细胞后能够诱导细胞死亡、过氧化氢和莨菪亭的积累.磷脂酶D抑制剂正丁醇能够抑制ParA1诱导的这些防卫反应,仲丁醇所起的抑制作用比正丁醇小,正丁醇和仲丁醇产生的抑制效果具有浓度依赖效应.而叔丁醇不能抑制ParA1诱导的这些反应.结果表明,磷脂酶D参与了ParA1诱导烟草悬浮细胞的信号传导过程.  相似文献   

5.
《Free radical research》2013,47(5):674-689
Abstract

Reactive oxygen species regulate protein functionality. Cell cycle CDC25 phosphatases are targets of such oxidative regulation in vitro. We sought to evaluate if a thioredoxin (trx)-dependent redox regulation of CDC25 exists in cancer cells. For that purpose, we used MCF7 and MDA-MB 231 breast cancer cells, which express trx1 differentially, together with two trx/thioredoxin reductase (trxR) inhibitors, Auranofin and Acrolein. Auranofin could induce a full trxR inhibition associated with ROS production in both cell lines. Acrolein could provoke similar effects only in MDA-MB 231 cells with a low trx1 expression. Simultaneous trx1 oxidation and trxR inactivation occurred only in the presence of Acrolein and resulted in a G2-M cell cycle arrest, without full CDC25 inhibition in MDA-MB 231 cells. Our data suggest that the maintenance of CDC25 activity does not fully rely on the trx system in breast cancer cells, even in the presence of a major oxidative stress.  相似文献   

6.
7.
Summary The effect of low concentrations of hydrogen peroxide (H2O2) (5 × 10−7−9.5 × 10−7 M) on cell growth and antibody production was investigated with murine hybridoma cells (Mark 3 and anti-hPL) in culture. Cell growth, measured by flow cytometry with morphological parameters, was significantly stimulated by H2O2 (8 × 10−7 M) but H2O2 concentration of 7 × 10−6 M and above increased cell death. H2O2 stimulation of antibody production was nonsignificant. The metabolism of cells treated with 8 × 10−7 or 1 × 10−5 M H2O2 was similar to that of the control in terms of glucose and glutamine consumption, lactate and ammonia production, and amino acid concentrations in the medium. The concentrations of lactate dehydrogenase, a marker of cell death, in test and control cells were similar. However, concentrations of intracellular free radicals measured by flow cytometry with dihydrorhodamine 123 (DHR 123) and dichlorofluorescein diacetate (DCFH-DA) as fluorochromes were different. The reactive oxygen species content of cells in 8 × 10−7 M H2O2 was similar to that of the controls, but there was a sudden, marked production of superoxide anions (detected with DHR 123) and H2O2 or peroxides (detected with DCFH-DA) by cells incubated with 1 × 10−5 M H2O2 which increased with increasing H2O2 until cell death.  相似文献   

8.
9.
The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin‐related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 + sectors, ACD2 functions cell autonomously, implicating a pro‐death ACD2 substrate as being cell non‐autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light‐dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro‐death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.  相似文献   

10.
Exopolymer particles are found throughout the ocean and play a significant biogeochemical role in carbon cycling. Transparent exopolymer particles (TEP) are composed of acid polysaccharides, and Coomassie staining particles (CSP) are proteins. TEPs have been extensively studied in the ocean, while CSP have been largely overlooked. The objective of this research was to determine the role of stress and cell permeability in the formation of TEP and CSP. The diatom Thalassiosira weissflogii and cyanobacterium Synechococcus elongatus were grown in batch cultures and exposed to hydrogen peroxide (0, 10, and 100 μM) as an environmental stressor. There was no correlation between TEP and CSP concentrations, indicating that they are different populations of particles rather than different chemical components of the same particles. CSP concentrations were not affected by hydrogen peroxide concentration and did not correlate with indicators of stress and cell death. In contrast, TEP concentrations in both taxa were correlated with a decrease in the effective quantum yield of photosystem II, increased activity of caspase‐like enzymes, and an increase in the proportion of the population with permeable cell membranes, indicating that TEP production was associated with the process of cell death. These data show that different environmental factors and physiological processes affected the production of TEP and CSP by phytoplankton. TEP and CSP are separate populations of exopolymer particles with potentially different biogeochemical roles in the ocean.  相似文献   

11.
Hypersensitive response, cell death and release of hydrogen peroxide as measures of host and non‐host defense mechanisms upon inoculation with the downy mildew pathogen Sclerospora graminicola were studied histochemically at the light microscopy level. The materials consisted of coleoptile tissues of the highly susceptible (cv. HB3), highly resistant (cv. IP18293) and induced resistant pearl millet host seedlings and non‐host sorghum (cv. SGMN10/8) and cotyledon of french bean (cv. S9). Resistance up to 80% protection against the downy mildew pathogen was induced in the highly susceptible HB3 cultivar of pearl millet by treating the seeds with 2% aqueous leaf extract of Datura metel for 3 h. Time course study with the pathogen inoculated highly resistant pearl millet cultivar revealed the appearance of hypersensitive response in 20% of seedlings as necrotic spots as early as 2 h after inoculation. In contrast, a similar reaction was observed in the highly susceptible pearl millet cultivar only 8 h after inoculation with the pathogen. In induced resistant seedlings, appearance of hypersensitive response was recorded 4 h after inoculation. Delayed hypersensitive response was observed in both the non‐host species at 10 h after inoculation. Hypersensitive response in the seedlings of the highly resistant pearl millet cultivar 24 h after inoculation showed 100% hypersensitive response, which was not observed in susceptible and non‐host species, although the induced resistant seedlings showed 90% hypersensitive response after that period of time. Cell death in the tissues of the test seedlings was also observed to change with time. Statistical analysis revealed that the tissues of highly resistant pearl millet seedlings required 2.9 h to attain 50% cell death. Tissues of induced resistant and highly susceptible pearl millet seedlings required 4.65 and 6.50 h respectively. In non‐hosts, 50% cell death was not recorded. Quantification of hydrogen peroxide in the tissue periplasmic spaces of the test seedlings revealed 2.94 h as the time required for 50% hydrogen peroxide accumulation in the tissues of highly resistant pearl millet seedlings. Tissues of induced resistant and highly susceptible pearl millet seedlings needed 3.76 and 5.5 h respectively. Fifty percent hydrogen peroxide localisation in non‐hosts could not be recorded. These results suggested the involvement of hydrogen peroxide, cell death and hypersensitive response in pearl millet host defense against S. graminicola.  相似文献   

12.
Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways and are canonically activated by nitric oxide– and natriuretic peptide–induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here, we found that purified PKGIα stored in PBS with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with DTT. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIβ activity only slightly increased with storage. Using PKGIα/PKGIβ chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased vasodilator-stimulated phosphoprotein phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.  相似文献   

13.
An increase in the production of reactive oxygen species (ROS) is a typical event occurring during different stress conditions and activating conflicting responses in plants. In order to investigate the relevance of different timing and amounts of ROS production, tobacco (Nicotiana tabacum) Bright Yellow-2 (TBY-2) cells were incubated with different amounts of glucose plus glucose oxidase, for generating H(2)O(2) during time, or directly with known amounts of H(2)O(2). Data presented here indicate that, in TBY-2 cells, a difference in H(2)O(2) level is a critical point for shifting metabolic responses towards strengthening of antioxidant defences, or their depletion with consequent cell death. Timing of ROS production is also critical because it can determine programmed cell death (PCD) or necrosis. Depending on the different kinds of activated cell death, ascorbate (ASC) and glutathione (GSH) pools are altered differently. Moreover, an H(2)O(2)-dependent activation of nitric oxide synthesis is triggered only in the conditions inducing PCD. Ascorbate peroxidase (APX) has been analysed under different conditions of H(2)O(2) generation. Under a threshold value of H(2)O(2) overproduction, a transient increase in APX occurs, whereas under conditions inducing cell necrosis, the activity of APX decreases in proportion to cell death without any evident alteration in APX gene expression. Under conditions triggering PCD, the suppression of APX involves both gene expression and alteration of the kinetic characteristics of the enzyme. The changes in ASC, GSH and APX are involved in the signalling pathway leading to PCD, probably contributing to guaranteeing the cellular redox conditions required for successful PCD.  相似文献   

14.
FMRFamide-related peptides are widespread neurotransmitters or neurohormones regulating somatic or visceral motor activity. Some recent data indicate that these neuropeptides may be involved in the control of cell proliferation and apoptosis. In this work we investigated the possible effect of FMRFamide on cell viability in an invertebrate-type proliferating tissue. As a model, we used the midintestinal gland of the snail, Helix lucorum Linnaeus. Immunohistochemistry demonstrated the direct innervation of the gland cells by FMRFamide-containing nerve fibers. Midintestinal glands of snails were injected with 50 μM FMRFamide and the control with sterile deionised water or bovine serum albumin (BSA). Injections were administrated 4 times. Transmission electron microscopy, annexin V-labeling, thiazolyl blue (MTT) viability tests and ploidy analyses were carried out to define the viable/dead cell ratio in the tissue samples. FMRFamide increased the MTT-reduction of tissues, reduced the amount of apoptotic nuclei and annexin V-labeled cells. Deionised water or BSA injection induced cell death. Cell cyle analysis revealed that FMRFamide significantly elevated the amount of cells in G0/G1 phase, but did not induce mitosis. We conclude, that the FMRFamide can be a life-signal for cells, protect them from apoptosis without altering mitosis. The project was supported by OTKA grant No. T 042762.  相似文献   

15.
To investigate the role of catalase and superoxide dismutase (SOD) in the acetic acid (AA) induced yeast programmed cell death (AA-PCD), we compared Saccharomyces cerevisiae cells (C-Y) and cells individually over-expressing catalase T (CTT1-Y) and Cu,Zn-SOD (SOD1-Y) with respect to cell survival, hydrogen peroxide (H2O2) levels and enzyme activity as measured up to 200 min after AA treatment. AA-PCD does not occur in CTT1-Y, where H2O2 levels were lower than in C-Y and the over-expressed catalase activity decreased with time. In SOD1-Y, AA-PCD was exacerbated; high H2O2 levels were found, SOD activity increased early, remaining constant en route to AA-PCD, but catalase activity was strongly reduced.  相似文献   

16.
植物生长发育过程中经常发生新老器官更替和细胞内含物的再分配、再利用。Lepold提出新生器官向衰老器官传递某种信息 ,动员后者细胞内含物向前者再分配。但是该信息的化学本质迄今仍不清楚。大蒜 (Alliumsativum)的离体蒜苔是研究细胞内含物再分配的良好材料。细胞内含物大量从苔茎向珠蒜中再分配 ,结果珠蒜显著膨大而苔茎衰老死亡。蔡可等发现赤霉素 (GA3)处理可有效抑制细胞内含物再分配。我们此前的研究发现GA3处理苔茎基部可显著改变珠蒜和苔茎H2 O2 代谢。本研究中我们分别用GA3和 3-氨基 - 1 ,2 ,4-三唑 (AT)H2 O2 清除酶catalase的专一性抑制剂处理珠蒜 ,结果发现GA3和AT均可有效抑制离体蒜苔细胞内含物再分配 (Fig .1 )。根据浓度不同 ,H2 O2 可以诱导细胞产生保护性反应或凋亡。细胞内含物再分配过程中 ,珠蒜H2 O2 浓度显著下降后保持于低水平 ,相反苔茎H2 O2 浓度极显著升高 1 0倍以上 ,而且细胞内含物转移早的苔茎下部H2 O2 峰值出现也早 (Fig .2 )。GA3或AT处理珠蒜 ,珠蒜H2 O2 浓度显著提高而苔茎H2 O2 浓度保持稳定的低水平或峰值显著推迟 (Fig .2 )。可见苔茎高浓度的H2 O2 诱导了苔茎细胞凋亡并把细胞内含物转移给珠蒜。已知约 2 %的呼吸耗氧生成H2 O2 。珠蒜呼吸速率显著高于苔茎 (王  相似文献   

17.
Tropolones, the naturally occurring compounds responsible for the durability of heartwood of several cupressaceous trees, have been shown to possess both metal chelating and antioxidant properties. However, little is known about the ability of tropolone and its derivatives to protect cultured cells from oxidative stress-mediated damage. In this study, the effect of tropolones on hydrogen peroxide-induced DNA damage and apoptosis was investigated in cultured Jurkat cells. Tropolone, added to the cells 15 min before the addition of glucose oxidase, provided a dose dependent protection against hydrogen peroxide induced DNA damage. The IC50 value observed was about 15 μM for tropolone. Similar dose dependent protection was also observed with three other tropolone derivatives such as trimethylcolchicinic acid, purpurogallin and β-thujaplicin (the IC50 values were 34, 70 and 74 μM, respectively), but not with colchicine and tetramethyl purpurogallin ester. Hydrogen peroxide-induced apoptosis was also inhibited by tropolone. However, in the absence of exogenous H2O2 but in the presence of non-toxic concentrations of exogenous iron (100 μM Fe3+), tropolone dramatically increased the formation of single strand breaks at molar ratios of tropolone to iron lower than 3 to 1, while, when the ratio increased over 3, no toxicity was observed. In conclusion, the results presented in this study indicate that the protection offered by tropolone against hydrogen peroxide-induced DNA damage and apoptosis was due to formation of a redox-inactive iron complex, while its enhancement of iron-mediated DNA damage at ratios of [tropolone]/[Fe3+] lower than 3, was due to formation of a lipophilic iron complex which facilitates iron transport through cell membrane in a redox-active form.  相似文献   

18.
Although hepatocyte growth factor (HGF) and its receptor are expressed in various regions of the brain, their effects and mechanism of action under pathological conditions remain to be determined. Over-activation of the N-methyl-d-aspartate (NMDA) receptor, an ionotropic glutamate receptor, has been implicated in a variety of neurological and neurodegenerative disorders. We investigated the effects of HGF on the NMDA-induced cell death in cultured hippocampal neurons and sought to explore their mechanisms. NMDA-induced cell death and increase in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were prevented by HGF treatment. Although neither the total amounts nor the mitochondrial localization of Bax, Bcl-2 and Bcl-xL were affected, caspase 3 activity was increased after NMDA exposure. Treatment with HGF partially prevented this NMDA-induced activation of caspase 3. Although the amount of apoptosis-inducing factor (AIF) was not altered, translocation of AIF into the nucleus was detected after NMDA exposure. This NMDA-induced AIF translocation was reduced by treatment with HGF. In addition, increased poly(ADP-ribose) polymer formation after NMDA exposure was attenuated by treatment with HGF. These results suggest that the protective effects of HGF against NMDA-induced neurotoxicity are mediated via the partial prevention of caspase 3 activity and the inhibition of AIF translocation to the nucleus.  相似文献   

19.
20.
拟南芥AtDAD1 超量表达植株对H2O2抗性的研究   总被引:1,自引:0,他引:1  
构建拟南芥AtDAD1超量表达载体,以农杆菌介导的方法转化拟南芥哥伦比亚生态型,比较AtDAD1超量表达植株和野生型植株表现型的差异,以及两者对H2O2抗性的不同。实验显示,AtDAD1转基因拟南芥生长较野生型拟南芥更为强壮,对高浓度H2O2有较强的耐受力。测定两者糖含量,发现AtDAD1转基因拟南芥叶片糖的含量明显高于野生型拟南芥叶片。以上结果表明,AtDAD1基因可能参与植物生长发育,并可能在拟南芥抵抗凋亡的过程中发挥重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号