首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some pharmacological actions of prostaglandin E1 (PGE1), 6-oxo-PGE1 and PGI2 have been studied. 6-oxo-PGE1 and PGI1 relaxed guinea-pig tracheal muscle in vitro and increased nasal patency in normal volunteers and in subjects with vasomotor rhinitis whereas PGI2 produced opposite effects. All three compounds produced bronchodilatation in the anaesthetised guinea-pig and relaxed human respiratory tract muscle in vitro.PGI2 was several times more potent than either 6-oxo-PGE1 or PGE1 against ADP-induced aggregation of human and baboon platelets in vitro. Intravenous 6-oxo-PGE1 in the baboon caused an ex vivo inhibition of platelet aggregation, but the EC5 was 7.8 times that of PGI2. As a vasodepressor in the baboon 6-oxo-PGE1 and PGE2 were equipotent. Thus with the exception of the vasodepressor effect, the actions of 6-oxo-PGE1 qualitatively and quantitatively resembled those of the structurally related PGE1 rather than those of PGI2.  相似文献   

2.
The antiaggregatory effects of 6-oxo-PGE1 were evaluated in vivo in the rat using a minimally invasive technique involving 111-Indium labelling of platelets. The antiaggregatory effects on adenosine diphosphate-induced aggregation were compared with those of prostacyclin (PGI2) and prostaglandin E1 (PGE1) following slow infusions and bolus injections. The rank order of antiaggregatory potency was PGI2 greater than 6-oxo-PGE1 greater than PGE1 while the rank order of duration of antiaggregatory effects was PGE1 greater than 6-oxo-PGE1 greater than PGI2. The kinetics of the antiaggregatory effects of these prostaglandins suggests that such actions are not mediated by direct effects on platelets, but through a secondary mechanism.  相似文献   

3.
The antiaggregatory effects of 6-oxo-PGE1 were evaluated in the rat using a minimally invasive technique involving 111-Indium labelling of platelets. The antiaggragatory effects on adenosine diphosphate-induced aggregation were compared with those of prostacyclin (PGI2) and prostalandin E1 (PGE1) following slow infusions and bolus injections. The rank order of antiaggregatory potency was PGI2 > 6-oxo-PGE1 > PGE1 while the rank order of duration of antiaggregatory effects was PGE1 > 6-oxo-PGE1 > PGI2. The kinetics of the antiaggregatory effects of these prostaglandins suggests that such action are not mediated by direct effects on platelets, but through a secondary mechanism.  相似文献   

4.
Turkeys are hypertensive compared to mammals of similar size. In vitro synthesis of thrombocyte thromboxane B2 (TxB2), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), 12L-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE) and aortic prostaglandin (PG) production was studied in one to ten month old domestic white turkeys. Compared to normal human platelets, TxB2 production was increased (55.4 vs. 31.4%) and HETE production was markedly reduced (6.5 vs. 34.6%) in control thrombocytes. Similar to human platelets in which cyclooxygenase inhibition with aspirin results in an increase in HETE production, block of the thrombocyte enzyme with aspirin doubled the production of HETE. In vitro conversion of radiolabeled arachidonic acid (AA) showed that the primary PG produced by turkey aorta was PGE2. A 6-keto immunoreactive PG was present which comigrated with authentic 6-keto PGF1 alpha, but failure of the aortic supernatant to inhibit adenosine diphosphate or AA induced platelet aggregation suggested that PGI2 was not produced. The vasodepressor potency of PGE1, PGE2 and PGI2 was altered in awake turkeys with PGE1 and PGE2 having five times the hypotensive effect as PGI2. In addition, conversion of AA to PGE2 by aorta in one month turkeys was greater (17.3 vs. 9.2%) than in ten month old turkeys. Systemic arterial pressure was increased in the ten month old turkeys (188 mmHg) compared to one month old turkeys (143 mmHg). Thus, both vascular AA metabolism and the vasodepressor potencies of PGE2 and PGI2 are altered and the activity of the lipoxygenase pathway in thrombocytes is limited in the turkey.  相似文献   

5.
The effects of prostacyclin (PGI2) and its stable metabolite 6-oxo-PGF1alpha on various bioassay tissues are compared with those of PGE2 and PGF2alpha, using the cascade superfusion method. On vascular smooth muscle, PGI2 caused relaxation of all tissues tested except the rabbit aorta. PGE2 relaxed rabbit coeliac and mesenteric artery but contracted bovine coronary artery and had no effect on rabbit aorta. 6-oxo-PGF1alpha was ineffective at the concentrations tested. On gastro-intestinal smooth muscle, PGI2 contracted strips of rat and hamster stomach and the chick rectum. It was less potent than PGE2 or PGF2alpha. None of these substances contracted the cat terminal ileum. 6-oxo-PGF1alpha was inactive on these tissues at the doses tested. PGI2 was less active than PGE2 or PGF2alpha in contracting guinea-pig trachea and rat uterus; 6-oxo-PGF1alpha was active only on the rat uterus. Thus, PGI2 can be distinguished from the other stable prostaglandins using the cascade method of superfusion.  相似文献   

6.
The biological effects of leukotriene (LT)B4 were compared, on a molar basis, with those of LTC4, LTD4, LTE4, 5-hydroxyeicosatetraenoic acid (5-HETE), PGD2, PGE1, PGE2, PGF2 alpha, PGI2, 6-oxo-PGF1 alpha, bradykinin (BK) and angiotensin II (Ang II) on isolated strips of guinea-pig lung parenchyma (GPP) and ileum smooth muscle (GPISM) superfused in series. LTB4 was similar to LTC4 and LTD4 on GPP, in relation to potency and contractions induced, but differed from LTE4 in being ten times more active and causing contractions of a much shorter duration of action on this tissue. However, unlike the other LTs, LTB4 produced contractions which were resistant to FPL 55712 (1.9 microM) and, when given repeatedly, caused tachyphylaxis in GPP. LTB4 was considerably more active on GPP than the other substances investigated. Further, PGD2, PGF2 alpha and PGI2 contracted GPP, the order of potency being PGD2 greater than PGF2 alpha approximately equal to PGI2, whereas PGE1 and PGE2 relaxed this tissue. In contrast to all other agonists tested which contracted GPISM, LTD4 displaying the highest activity, LTB4 was inactive on this tissue. 5-HETE and 6-oxo-PGF1 alpha were inactive on both GPP and GPISM. On the basis of differential effects of LTB4 on GPP and GPISM, this assay represents a simple and selective means to distinguish LTB4-like materials from other naturally-occurring substances likely to be generated in inflammatory fluids.  相似文献   

7.
The effects of (a) 4, 5, 6-trinor-3, 7-inter-m-phenylene PGE1 methyl ester, (b) 4, 5, 6 trinor-3, 7-inter-m-phenylene 3 oxa PGE1 and (c) 4, 5, 6 trinor-3, 7-inter-m-phenylene 3 oxa PGE1 methyl ester on human and guinea pig respiratory tract muscle in vitro and in vivo have been studied. All the analogues relaxed the isolated preparations of guinea-pig tracheal chain, human tracheal, bronchial and bronchiolar muscles and decreased histamine-induced lung resistance in the anaesthetised guinea pig. On some preparations the effects of the analogues were more pronounced than those of PGE1. The results suggest that some of the inter-m-phenylene analogues of PGE1 may be bronchodilators in asthmatics.  相似文献   

8.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2alpha, 6 keto PGF1alpha (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2alpha) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10(-8)M. PGI2 and 6 keto PGF1alpha had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

9.
The vascular actions of several prostanoids and arachidonate lipoxygenase products were investigated on the gastric circulation of rat and rabbit in vitro perfused with Krebs' solution. Under resting conditions, prostacyclin and PGE2 produced small decreases in perfusion pressure with prostacyclin being the more potent. During vasoconstriction induced by infusion of noradrenaline, vasopressin or angiotensin II, prostacyclin was 20-40 times as active as PGE2 as a gastric vasodilator in rat or rabbit stomach. PGF2 alpha was a less potent vasoconstrictor than noradrenaline, while the epoxy-methano endoperoxide analogue produced a long-lasting vasoconstriction. The putative metabolite, 6-oxo-PGE1 was less active than prostacyclin as a vasodilator, having comparable activity to PGE1, whereas 6-oxo-PGF1 alpha had very little activity. The endoperoxide, PGH2 reduced perfusion pressure, this effect being inhibited by concurrent infusion of 15-HPETE. The vasodilation induced by arachidonic acid was likewise reduced by 15-HPETE, and abolished by indomethacin infusion. The arachidonate lipoxygenase hydroperoxides were vasodilator in the gastric circulation, the rank order of potency being 12-HPETE greater than 11-HPETE greater than 5-HPETE greater than 15-HPETE in both rat and rabbit stomach. It is possible that such vasoactive lipoxygenase products, may play modulator roles in the gastric mucosa.  相似文献   

10.
Prostacyclin (PGI2) is metabolized to 6-keto-prostaglandin E1 (6-keto-PGE1) which is more stable yet equipotent to PGI2 in lowering systemic arterial blood pressure in the dog. In this study, partial hepatectomy was performed to determine the role of the liver in the vasodepressor response to both intravenously administered PGI2 and 6-keto-PGE1. The magnitude and the duration of systemic hypotensive responses were measured in hepatectomized and sham-operated male Wistar rats following less than maximal, equidepressor doses of PGI2 (0.3 microgram/kg), 6-keto-PGE1 (1.0 microgram/kg), and also PGE1 (3.0 micrograms/kg) and PGE2 (3.0 micrograms/kg). Hepatectomy did not significantly alter the magnitude of the systemic hypotensive response to any of the prostaglandins tested. This indicates that the liver and hepatic circulation do not contribute significantly to the hypotensive effect of these prostaglandins by alterations of systemic vascular resistance, venous pooling of blood, or the generation of additional vasoactive metabolites as may be expected following administration of these prostaglandins. However, hepatectomy did significantly increase the duration of the hypotensive response to PGI2 and 6-keto-PGE1 but not PGE1 or PGE2. We conclude that in vivo, the liver has a more significant role in PGI2 and 6-keto-PGE1 inactivation than in the inactivation of PGE1 and PGE2 when administered intravenously. These results also support the relatively greater significance of the lung in the inactivation of PGE1 and PGE2 in vivo.  相似文献   

11.
Prostaglandins E2 and I2 were compared with known antiarrhythmics for their actions against arrhythmias produced by occlusion of the left anterior descending coronary artery in the anaesthetised rat while PGI2 was also examined in the dog. PGI2 in the dog suppressed early arrhythmias produced during occlusion but did not influence those produced by occlusion-release or those occurring 24 hours after a permanent occlusion; none of the A,B,C or D series prostaglandins tested markedly reduced 24 hour arrhythmias. In the rat PGE2 was antiarrhythmic against early occlusion arrhythmias (30 minutes occlusion) in a dose related manner (infusions of 1-4 microgram/kg/min) whereas PGI2 infusions potentiated the arrhythmogenic effect of occlusion. PGE2 was as effective an antiarrhythmic as 10mg/kg Org. 6001 which was more effective in this test situtation than dl-propranolol. No obvious mechanisms for the actions of PGE2 or PGI2 were apparent although both agents lowered blood pressure and reduced the size of the occluded zone produced by ligation.  相似文献   

12.
We examined the involvement of cyclooxygenase (COX)-1 and COX-2 on mechanical scratching-induced prostaglandins (PGs) production in the skin of mice. The dorsal regions of mice were scratched using a stainless brush. COXs expressions in the skin were analyzed using real-time PCR and Western blotting. The effect of acetylsalicylic acid (ASA) on the ability of PGs production were determined based on skin PGs level induced by arachidonic acid (AA) application. Mechanical scratching increased PGD2, PGE2, PGI2 and PGF(2 alpha). COX-1 was constitutively expressed and COX-2 expression was enhanced by scratching. Intravenous administration of ASA inhibited PGs biosynthesis in the normal skin. PGs levels of the skin 6h after ASA administration (ASA 6 h) were almost equal to those of the skin 10 min after ASA administration (ASA 10 min). In the scratched skin, AA-induced PGE2 and PGI2 of ASA 6 h were significantly higher than those of ASA 10 min. The skin PGD2 and PGF(2 alpha) of ASA 10 min were almost same to those of ASA 6 h. In the normal skin of COX-1-deficient mice, skin PGD2 level was lower than that of wild-type mice, although PGE2, PGI2 and PGF(2 alpha) levels were almost equal to those of wild type. In the scratched skin of COX-1-deficient mice, PGD2, PGE2, PGI2 and PGF(2 alpha) levels were lower than those of wild-type mice. These results suggested that cutaneous PGD2 could be mainly produced by COX-1, and PGE2 and PGI2 could be produced by COX-1 and COX-2, respectively, in mice.  相似文献   

13.
Prostaglandin (PG) E2 inhibited both phases of contraction produced by electrical field stimulation of the guinea-pig vas deferens. PGF2alpha and PGD2 were without effect on this preparation. Carbacyclin (a PGI2) analogue inhibited the first phase of contraction at higher concentrations, whereas U46619 (a thromboxane mimetic) potentiated both phases of contraction. As exogenous arachidonic acid inhibits both phases of contraction of the electrically field-stimulated guinea-pig vas deferens, it is likely that the arachidonic acid is converted to PGE2 in the vas deferens. Indomethacin, a non-specific inhibitor of prostaglandin H synthase (PGHS), attenuated the inhibitory actions of exogenous arachidonic acid when examined on the first phase of contraction. NS-398, a relatively specific inhibitor of PGHS-2, also prevented the inhibitory action of exogenous arachidonic acid. However, NS-398 was much less effective than indomethacin in this respect even though NS-398 and indomethacin inhibit PGHS-2 with similar potencies. Consequently, the findings suggest that exogenous arachidonic acid is converted to PGE2 in the guinea-pig vas deferens by the actions of PGHS-1 and, to a lesser extent, by PGHS-2.  相似文献   

14.
The effect of prostacyclin (PGI2) on blood pressure and heart rate (in vivo) and on isolated heart tissue has been investigated in different species. Isolated cardiac tissue had limited responses to PGI2 tested at 10(-13) to 10(-5) M. Cultured neonatal rat heart cells did not respond to PGI2, neither did intact rat hearts or rabbit cardiac tissue. Guinea pig and rat atria showed limited dose-dependent responses to PGI2 at concentrations greater than 10(7) M. In rat atria, 10(-5) M PGI2 produced a limited elevation of tissue cAMP content. When given by intravenous injection or infusion, PGI2 produced hypotension in anaesthetized primates (three species), rat, rabbit, pig, and dog. As a vasodepressor in all species, PGI2 (on a weight basis) was more active than prostaglandins of the B or E type and, in most species tested, it was approximately five times more active than PGE2. Heart responses in intact animals were often paradoxical in that decreases in heart rate often accompanied blood pressure falls.  相似文献   

15.
To examine further the possible prostanoid involvement in the influence of the epithelium on guinea-pig tracheal smooth muscle responsiveness, we have analyzed the effects of LTD4, methacholine and histamine on the level of airway smooth muscle tone and on the amounts of PGE2, PGF2 alpha and PGI2 (determined by radioimmunoassay) in the presence and absence of the epithelium. Removal of the epithelium increased the sensitivity of guinea-pig trachea to the contractile effects of LTD4, methacholine and histamine. LTD4 (3-100 nM), methacholine (0.1-10 microM) or histamine (0.3-30 microM) did not increase prostanoid release above control values in either the presence or absence of the epithelium. The unstimulated release of PGE2 and PGF2 alpha, but not PGI2, was decreased in tissues lacking epithelium. Indomethacin (1 microM) reduced the baseline tone to a smaller extent in the absence of epithelium. In the presence but not the absence of the epithelium, indomethacin increased the sensitivity of preparations to the contractile effect of methacholine. The results support the postulate of an epithelium-derived inhibitory factor modulating guinea-pig tracheal smooth muscle responsiveness. The identity of this factor is not known but is not PGI2 and is unlikely to be PGF2 alpha or PGE2. However, the possibility remains that the basal release of PGE2 and/or PGF2 alpha derived from the epithelium may markedly affect the responsiveness of guinea-pig tracheal smooth muscle. Furthermore, the epithelium is a significant source of PGE2 and PGF2 alpha which may be involved in the maintenance of baseline tone.  相似文献   

16.
The effects of prostacyclin (PGI2) and its breakdown product 6-oxo-PGF1alpha on various aspects of gastric function were investigated in the rat. PGI2 increased mucosal blood flow when infused intravenously. PGI2 was a more potent inhibitor of gastric acid secretion in vivo than PGE2. Like PGE2, PGI2 inhibited acid secretion from the rat stomach in vitro. PGI2 had comparable activity to PGE2 in inhibiting indomethacin-induced gastric erosions. Thus prostacyclin shares several of the activities of PGE2, and may be involved in the regulation of gastric mucosal function.  相似文献   

17.
PGE1 relaxed isolated human circular bronchial muscle over a wide concentration range as did isoprenaline. Surprisingly isoprenaline was more potent than PGE1. PGF2alpha weakly contracted this muscle preparation whereas histamine was more potent. PGE2, however, produced paradoxical results, relaxing some tissues and contracting others, always in a concentration-related manner irrespective of tissue tone. In preparations that contracted to PGE2, tachyphylaxis induced to PGF2alpha also applied to PGE2, but did not affect PGE1 relaxations of histamine contractions. These findings suggest that pge2 can stimulate either PGF2alpha or PGE1 receptors of isolated human bronchial muscle.  相似文献   

18.
We used a radioenzymatic technique to measure effects of the prostaglandin synthesis inhibitor indomethacin and of exogenous prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) on acetylcholine (ACh) efflux from canine tracheal smooth muscle (TSM) during sustained electrical field stimulation (EFS; 2 Hz, 2 ms pulse duration, 50 V for 15 min). ACh efflux from indomethacin (INDO, 10(-6) M)-pretreated and control TSM increased with consecutive stimulations. However, efflux of ACh was greater in INDO-treated than control muscles. INDO increased the tension produced by TSM in response to EFS. Neither PGE2 (10(-8) M) nor PGI2 (10(-6) M) had any effect on ACh efflux from INDO-pretreated TSM during the first of three periods of EFS. However, PGI2 and PGE2 prevented the progressive increase in ACh efflux observed on subsequent stimulations. PGE2 but not PGI2 decreased contractions of TSM caused by EFS. Our results demonstrate that endogenous prostaglandins, probably PGE2, do inhibit EFS-evoked ACh release from canine TSM in vitro, but suggest that these prostaglandins modulate EFS-evoked contractions predominantly by postsynaptic mechanisms.  相似文献   

19.
The actions of prostacyclin (PGI2) and its stable metabolite 6-OXO-PGF1alpha were investigated in strips of normal human uterus and in fallopian tubes. Both compounds were also compared with natural prostaglandins (PGE2, PGF2alpha and PGD2). PGI2 showed biphasic response both in uterus and fallopian tubes qualitatively and quantitatively similar to that induced by PGE2 and PGD2; prostacyclin was also able to inhibit the spasmus induced by PGF2alpha but not that induced by BaCl2 and vasopressin. 6-0XO-PGF1alpha on the other hand induced only small contractions on both tissues investigated. The authors discusse the possible implication of these findings in the physiology of the reproductive system.  相似文献   

20.
The effects of L-641,953 (R-8-fluoro-dibenzo[b, f]thiepin-3-carboxylic acid-5-oxide) have been studied on pulmonary and other smooth muscle preparations in vitro and in vivo. When studied in vitro on guinea-pig tracheal chains, L-641,933 produced significant shifts in the dose-response curves to the prostaglandin endoperoxide analogues, U-44069 (pA2 7.06) and U-46619 (pA2 7.14), and prostaglandin (PG) F2 alpha (pA2 6.33) had minimal activity against contractions induced by histamine (pA2 4.38), 5-hydroxytryptamine (pA2 4.63), and acetylcholine (pA2 4.56) and slightly enhanced relaxation induced by PGE2. When tested on the guinea-pig gall bladder strip in vitro, L-641,953 antagonized contractions induced by U-44069 (pA2 7.03) but was less active against those induced by PGF2 alpha (pA2 6.03), PGE1 (pA2 5.62), and histamine (pA2 4.84). When tested in vitro on the guinea-pig pulmonary artery, L-651-953 significantly antagonized contractions induced by U-44069 (pA2 7.04), U-46619 (pA2 7.14), and PGF2 alpha (pA2 7.16) but was less effective against contractions induced by histamine (pA2 4.19). Schild analysis indicated that L-641,953 was fully competitive against contractions of either the guinea-pig tracheal chain induced by U-46619 or the guinea-pig pulmonary artery induced by U-44069 and U-46619. When tested on human platelets in vitro L-641,953 inhibited aggregation induced by U-44069 (IC50 1.3 X 10(-6) M) but not ADP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号