首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The use of sonomicrometry to study the mechanical properties of the diaphragm in vivo is presented. This method consists of the implantation of piezoelectric transducers between muscle fibers to measure the fibers' changes in length. Ultrasonic bursts are produced by one transducer upon electrical excitation and sensed by a second transducer placed 1-2 cm away. The time elapsed between the generation of the ultrasound burst and its detection is used to calculate the intertransducer distance. Excitation and sampling are done at 1.5 kHz and the output is a DC signal proportional to the length change between the transducers. Neither irreversible injury to the diaphragm nor regional differences within an anatomical part or segment were noted. Measurements were stable within the physiological range of temperature. We measured costal and crural length and velocity of contraction in anesthetized dogs during spontaneous breathing, occluded inspirations, passive lung inflation, and supramaximal phrenic nerve stimulation. We found that shortening during spontaneous breathing was 11 and 6% for crural and costal, respectively. The crural leads the costal in velocity of shortening. Supramaximal stimulation results in a velocity of shortening of 5 resting lengths X s-1. During an occluded inspiration crural shortens as much as in the nonoccluded breath, whereas costal shortens less. During passive lung inflation there is a nearly linear relationship between lung volume and diaphragm length; however, the relationships of chest wall dimensions with diaphragm length are nonlinear and cannot be described by any simple function. Some of the implications of these data on the present understanding of diaphragmatic mechanics are discussed.  相似文献   

3.
Respiratory changes in nasal muscle length   总被引:3,自引:0,他引:3  
Respiratory changes in alae nasi muscle length were recorded using sonomicrometry in pentobarbital sodium-anesthetized tracheostomized dogs spontaneously breathing 100% O2. Piezoelectric crystals were inserted via small incisions into the alae nasi of 11 animals, and bipolar fine-wire electrodes were inserted contralaterally in nine of the same animals. The alae nasi shortened during inspiration in all animals. The mean amount of shortening was 1.33 +/- 0.22% of resting length (LR), and the mean velocity of shortening during the first 200 ms was 4.60 +/- 0.69% LR/S. The onset of alae nasi shortening preceded inspiratory flow by 77 +/- 18 ms (P less than 0.002), at which time both alae nasi shortening and the moving average of electromyographic (EMG) activity had reached approximately one-third of their peak values. In contrast, there was a relative delay in alae nasi relaxation relative to the decay of alae nasi EMG at the end of expiration. Single-breath airway occlusions at end expiration changed the normally rounded pattern of alae nasi shortening and moving average EMG to a late-inspiratory peaking pattern; both total shortening and EMG were increased by similar amounts. The onset of vagally mediated volume-related inhibition of alae nasi shortening occurred synchronously with the onset of inhibition of alae nasi EMG; both occurred at lung volumes substantially below tidal volume. These results indicate that the pattern of inspiratory shortening of this nasal dilating muscle is reflected closely in the pattern of EMG activity and that vagal afferents cause substantial inhibition of alae nasi inspiratory shortening.  相似文献   

4.
5.
This paper hypothesizes that average muscle length and minimum tendon strain govern muscle and tendon length adaptation in all situations. A model has been implemented to test this hypothesis, and simulations have been performed for normal development, bone lengthening, immobilization, and retinacular release experiments in young and adult animals. The simulation results predict that both muscle and tendon lengthen during normal development, with the rate of tendon growth slowing faster than the rate of muscle growth. The results also predict that muscle length increases during bone lengthening in both young and adult animals, while tendon length increases only in young animals. For immobilization in adult animals, the results predict that muscle length increases when the muscle is immobilized in a lengthened position and decreases when the muscle is immobilized in a shortened position with no change in tendon length. For immobilization in young animals, the results predict reduced muscle growth and increased tendon growth regardless of immobilization position. Finally, the simulations predict that retinacular release which increases excursion of the musculotendinous unit leads to increased muscle length with decreased tendon length in young animals and decreased muscle length with no change in tendon length in adult animals. These simulation results are consistent with experimental findings reported in the literature by other investigators. This suggests that average muscle length and minimum tendon strain may represent general principles that govern muscle and tendon length adaptation.  相似文献   

6.
7.
The principle nonlinear characteristics of changes in the length of active (soleus, gastrocnemius, and plantaris) muscle resulting from controlled changes in external load were examined during acute experiments on anesthetized cats. Summation of successive muscle responses to repetitive phased changes in load was shown to be absent due to hysteresis effects; this does not satisfy the principles of superposition and leads to an important functional result: the muscle exerts a stabilizing effect on overall motor system dynamics, limiting unwanted shifts in joint angles during variation in external load. A relationship between the trajectory profile of change in muscle length and the lead-up to the movement arises due to muscle contraction hysteresis. Velocity at the initial stage of movement was always higher when the latter was preceded by motion in the same direction. The functional significance of the nonlinear properties of active muscle movement accompanying changing external load is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 736–743, November–December, 1988.  相似文献   

8.
An experiment was undertaken to measure directly the changing length of a jaw muscle during feeding in four intact, unanesthetized New Zealand White rabbits. Metal markers were implanted to define the anterior and posterior ends of the single belly of the digastric muscle and fluroscopic images were recorded on videotape while the animals fed on pelleted chow and carrot. Graphs of muscle length versus incisor separation were obtained by making measurements of single frames of the videotape record. The graphs revealed that when pelleted chow was being chewed the length of the diagastric muscle changed by no more than 9% of its greatest length; during the latter part of the closing stroke it changed very little. Incising and chewing carrot caused the digastric muscle to change in length continuously throughout the chewing cycle; incising carrot resulted in a 13% change in the length of the digastric muscle. The velocity of shortening is slightly less than one muscle length per second.  相似文献   

9.
10.
11.
12.
The purpose of the present study was to assess the effects of bronchoconstriction on respiratory changes in length of the costal diaphragm and the parasternal intercostal muscles. Ten dogs were anesthetized with pentobarbital sodium and tracheostomized. Respiratory changes in muscle length were measured using sonomicrometry, and electromyograms were recorded with bipolar fine-wire electrodes. Administration of histamine aerosols increased pulmonary resistance from 6.4 to 14.5 cmH2O X l-1 X s, caused reductions in inspiratory and expiratory times, and decreased tidal volume. The peak and rate of rise of respiratory muscle electromyogram (EMG) activity increased significantly after histamine administration. Despite these increases, bronchoconstriction reduced diaphragm inspiratory shortening in 9 of 10 dogs and reduced intercostal muscle inspiratory shortening in 7 of 10 animals. The decreases in respiratory muscle tidal shortening were less than the reductions in tidal volume. The mean velocity of diaphragm and intercostal muscle inspiratory shortening increased after histamine administration but to a smaller extent than the rate of rise of EMG activity. This resulted in significant reductions in the ratio of respiratory muscle velocity of shortening to the rate of rise of EMG activity after bronchoconstriction for both the costal diaphragm and the parasternal intercostal muscles. Bronchoconstriction changed muscle end-expiratory length in most animals, but for the group of animals this was statistically significant only for the diaphragm. These results suggest that impairments of diaphragm and parasternal intercostal inspiratory shortening occur after bronchoconstriction; the mechanisms involved include an increased load, a shortening of inspiratory time, and for the diaphragm possibly a reduction in resting length.  相似文献   

13.
We analyzed the microstructure in the first-order laser diffraction line from both resting and tetanically contracting single twitch fibers from frog anterior tibial muscle to see if the distribution of sarcomere lengths is continuous or discrete. Measuring the distance between adjacent microstructural elements lying parallel, we plotted a histogram of the corresponding differences of sarcomere length. The histograms obtained both from resting and contracting fibers had a prominent peak at approximately 12-14 nm. The result suggests that the sarcomere length distribution may be discrete with unit separation of approximately 12-14-nm sarcomere length.  相似文献   

14.
The ability of arterial smooth muscle to generate tension is influenced by muscle length. An unsettled question is whether the length-tension relationship is a simple reflection of the contractile filament overlap, as it is in skeletal muscle. There are several factors that could potentially affect tension generation in arterial smooth muscle; these include stretch-induced myogenic response and length-oscillation-induced disruption of the contractile filament organization. In this study, in which rabbit carotid arterial preparations were used, we found that different length-tension curves could be obtained at different times after a length change. In addition, length oscillation at a frequency of normal pulse rate and with small to moderate oscillation amplitude was found to potentiate tension generation but reduced tension at large amplitudes. The observed response could be attributed to adaptation of the muscle to length change over time and to myogenic potentiation associated with stretching of the muscle.  相似文献   

15.
Functional bases of fiber length and angulation in muscle   总被引:5,自引:0,他引:5  
The differences in angulation and length observed for the fibers of anatomical muscles may reflect two distinct mechanical requirements: arrangement for pinnation, reflecting an increase in physiological cross-section and arrangement for equivalent placement of sarcomeres, possibly associated with coordination. The observed differences in fiber angulation and length have different effects upon the responses of sarcomeres, specifically on their extent and rate of shortening and on the force they may generate. The basic mechanisms governing these effects and the various arrangements of muscles are reviewed. Fiber length and angulation in the complex M. adductor mandibulae externus 2 of a lizard were measured stereotactically; these values correlate well with the hypothesis that the muscle shows equivalence and demonstrate that angulation for pinnation is less constant. An outline for the study of muscle architecture and function, detailing the kinds of information require to estimate forces and evaluate muscle and fiber placements, is presented.  相似文献   

16.
Length adaptation of the airway smooth muscle cell is attributable to cytoskeletal remodeling. It has been proposed that dysregulated actin filaments may become longer in asthma, and that such elongation would prevent a parallel-to-series transition of contractile units, thus precluding the well-known beneficial effects of deep inspirations and tidal breathing. To test the potential effect that actin filament elongation could have in overall muscle mechanics, we present an extremely simple model. The cytoskeleton is represented as a 2-D network of links (contractile filaments) connecting nodes (adhesion plaques). Such a network evolves in discrete time steps by forming and dissolving links in a stochastic fashion. Links are formed by idealized contractile units whose properties are either those from normal or elongated actin filaments. Oscillations were then imposed on the network to evaluate both the effects of breathing and length adaptation. In response to length oscillation, a network with longer actin filaments showed smaller decreases of force, smaller increases in compliance, and higher shortening velocities. Taken together, these changes correspond to a network that is refractory to the effects of breathing and therefore approximates an asthmatic scenario. Thus, an extremely simple model seems to capture some relatively complex mechanics of airway smooth muscle, supporting the idea that dysregulation of actin filament length may contribute to excessive airway narrowing.  相似文献   

17.
Relation between upper airway volume and hyoid muscle length   总被引:2,自引:0,他引:2  
Previous studies have suggested that the geniohyoid and sternohyoid muscles act to enlarge the upper airway. If correct, there should be an inverse relation between upper airway volume and the length of hyoid muscles. To test this, known volumes of air were injected into or removed from the isolated sealed upper airway of eight pentobarbital sodium-anesthetized cats, and the resultant changes in geniohyoid and sternohyoid length were measured using sonomicrometry. Increases in upper airway volume shortened the geniohyoid in all cats (P less than 0.001) and shortened the sternohyoid in seven of eight cats (P less than 0.01); mean geniohyoid shortening (as a % of resting length) exceeded that of the sternohyoid. Decreases in upper airway volume lengthened the geniohyoid in all cats (P less than 0.001) but caused variable changes in sternohyoid length. Extension of the neck increased the resting lengths of both the geniohyoid (P less than 0.001) and sternohyoid (P less than 0.002). Neck flexion shortened the resting length of both hyoid muscles (P less than 0.001 for both), with the geniohyoid shortening more (as a % of resting length) than the sternohyoid (P less than 0.005). Progressive flexion of the neck from 180 to 90 degrees caused progressive increases in the ratio of changes in muscle length to changes in upper airway volume during airway inflation but did not affect this relation during airway deflation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.  相似文献   

19.
Caffeine and length dependence of staircase potentiation in skeletal muscle   总被引:1,自引:0,他引:1  
Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.  相似文献   

20.
This study was undertaken to determine the impact of sarcomere length (SL) on the level of cooperative activation of the cardiac myofilament at physiological [Mg2+]. Active force development was measured in skinned rat cardiac trabeculae as a function of free [Ca2+] at five SLs (1.85-2.25 microm; 1 mM free [Mg2+]; 15 degrees C). Only muscle preparations with minimal force rundown during the entire protocol were included in the analysis (average 7.2 +/- 1.7%). Median SL was measured by on-line computer video micrometry and controlled within 0.01 microm. Care was taken to ensure a sufficient number of data points in the steep portion of the [Ca2+]-force relationship at every SL to allow for accurate fit of the data to a modified Hill equation. Multiple linear regression analysis of the fit parameters revealed that both maximum, Ca2+-saturated force and Ca2+ sensitivity were a significant function of SL (P < 0.001), whereas the level of cooperativity did not depend on SL (P = 0.2). Further analysis of the [Ca2+]-force relationships revealed a marked asymmetry that, also, was not affected by SL (P = 0.2-0.6). Finally, we found that the level of cooperativity in isolated skinned myocardium was comparable to that reported for intact, nonskinned myocardium. Our results suggest that an increase in SL induces an increase in the Ca2+ responsiveness of the cardiac sarcomere without affecting the level of cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号