首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of parietal cells causes fusion of intracellular tubulovesicles with the canalicular plasma membrane thereby increasing the apical membrane area up to tenfold. The presence of the SNARE proteins synaptobrevin, syntaxin1, and SNAP25 in parietal cells and their intracellular redistribution after stimulation suggest a SNARE-mediated mechanism. Here we show that NSF and alpha, beta-SNAPs which are involved in the dissociation of the SNARE complex in neurons also occur in parietal cells exhibiting subcellular distributions similar to the ones obtained for SNARE proteins and for the H+, K(+)-ATPase. More importantly proteolytic cleavage of synaptobrevin by tetanus neurotoxin completely inhibits the cAMP-dependent increase of acid secretion further supporting the crucial role SNARE proteins play in parietal cells.  相似文献   

2.
H+/K(+)-ATPase is the proton pump in the gastric parietal cell that is responsible for gastric acid secretion. Stimulation of acid secretion is associated with a reorganization of the parietal cells resulting in the incorporation of H+/K(+)-ATPase from a cytoplasmic membrane pool, the tubulovesicle compartment, into the apical canalicular membrane. To better characterize the role of membrane trafficking events in the morphological and physiological changes associated with acid secretion from parietal cells, we have characterized the expression and localization of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in these cells. Each of the six different SNARE proteins examined [syntaxins 1 through 4 of 25-kDa synaptosome-associated protein, and vesicle-associated membrane protein] were found to be expressed in parietal cells. Furthermore, two of these SNAREs, vesicle-associated membrane protein and syntaxin 3, were associated with H+/K(+)-ATPase-containing tubulovesicles while the remainder were excluded from this compartment. The expression of syntaxin 1 and synaptosome-associated protein of 25 kDa in parietal cells, two SNAREs previously thought to be restricted to neuroendocrine tissues, suggests that parietal cells may utilize membrane trafficking machinery that is similar to that utilized for regulated exocytosis in neurons. Furthermore, the localization of syntaxin 3, a putative target membrane SNARE, to the tubulovesicle compartment indicates that syntaxin 3 may have an alternative function. These observations support a role for intracellular membrane trafficking events in the regulated recruitment of H+/K(+)-ATPase to the plasma membrane after parietal cell stimulation.  相似文献   

3.
Synaptophysin is one of the most abundant membrane proteins of small synaptic vesicles. In mature nerve terminals it forms a complex with the vesicular membrane protein synaptobrevin, which appears to modulate synaptobrevin's interaction with the plasma membrane-associated proteins syntaxin and SNAP25 to form the SNARE complex as a prerequisite for membrane fusion. Here we show that synaptobrevin is preferentially cleaved by tetanus toxin while bound to synaptophysin or when existing as a homodimer. The synaptophysin/synaptobrevin complex is, however, not affected when neuronal secretion is blocked by botulinum A toxin which cleaves SNAP25. Excessive stimulation with alpha-latrotoxin or Ca(2+)-ionophores dissociates the synaptophysin/synaptobrevin complex and increases the interaction of the other SNARE proteins. The stimulation-induced dissociation of the synaptophysin/synaptobrevin complex is not inhibited by pre-incubating neurones with botulinum A toxin, but depends on extracellular calcium. However, the synaptophysin/synaptobrevin complex cannot be directly dissociated by calcium alone or in combination with magnesium. The dissociation of synaptobrevin from synaptophysin appears to precede its interaction with the other SNARE proteins and does not depend on the final fusion event. This finding further supports the modulatory role the synaptophysin/synaptobrevin complex may play in mature neurones.  相似文献   

4.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

5.
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx3-69Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.  相似文献   

6.
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx3-69Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.  相似文献   

7.
H+ transport in the collecting duct is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor (SNARE) proteins are critical for exocytosis. Syntaxin 1A contains three main domains, SNARE N, H3, and carboxy-terminal transmembrane domain. Several syntaxin isoforms form SNARE fusion complexes through the H3 domain; only syntaxin 1A, through its H3 domain, also binds H+-ATPase. This raised the possibility that there are separate binding sites within the H3 domain of syntaxin 1A for H+-ATPase and for SNARE proteins. A series of truncations in the H3 domain of syntaxin 1A were made and expressed as glutathione S-transferase (GST) fusion proteins. We determined the amount of H+-ATPase and SNARE proteins in rat kidney homogenate that complexed with GST-syntaxin molecules. Full-length syntaxin isoforms and syntaxin-1AC [amino acids (aa) 1–264] formed complexes with H+-ATPase and SNAP23 and vesicle-associated membrane polypeptide (VAMP). A cassette within the H3 portion was found that bound H+-ATPase (aa 235–264) and another that bound SNAP23 and VAMP (aa 190–234) to an equivalent degree as full-length syntaxin. However, the aa 235–264 cassette alone without the SNARE N (aa 1–160) does not bind but requires ligation to the SNARE N to bind H+-ATPase. When this chimerical construct was transected into inner medullary collecting duct cells it inhibited intracellular pH recovery, an index of H+-ATPase mediated secretion. We conclude that within the H3 domain of syntaxin 1A is a unique cassette that participates in the binding of the H+-ATPase to the apical membrane and confers specificity of syntaxin 1A in the process of H+-ATPase exocytosis. soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor proteins; exocytosis; H++ transport  相似文献   

8.
Assembly of the SNARE proteins syntaxin1, SNAP25, and synaptobrevin into a SNARE complex is essential for exocytosis in neurons. For efficient assembly, SNAREs interact with additional proteins but neither the nature of the intermediates nor the sequence of protein assembly is known. Here, we have characterized a ternary complex between syntaxin1, SNAP25, and the SM protein Munc18‐1 as a possible acceptor complex for the R‐SNARE synaptobrevin. The ternary complex binds synaptobrevin with fast kinetics, resulting in the rapid formation of a fully zippered SNARE complex to which Munc18‐1 remains tethered by the N‐terminal domain of syntaxin1. Intriguingly, only one of the synaptobrevin truncation mutants (Syb1‐65) was able to bind to the syntaxin1:SNAP25:Munc18‐1 complex, suggesting either a cooperative zippering mechanism that proceeds bidirectionally or the progressive R‐SNARE binding via an SM template. Moreover, the complex is resistant to disassembly by NSF. Based on these findings, we consider the ternary complex as a strong candidate for a physiological intermediate in SNARE assembly.  相似文献   

9.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

10.
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate cellular membrane fusion events and provide a level of specificity to donor-acceptor membrane interactions. However, the trafficking pathways by which individual SNARE proteins are targeted to specific membrane compartments are not well understood. In neuroendocrine cells, synaptosome-associated protein of 25 kDa (SNAP25) is localized to the plasma membrane where it functions in regulated secretory vesicle exocytosis, but it is also found on intracellular membranes. We identified a dynamic recycling pathway for SNAP25 in PC12 cells through which plasma membrane SNAP25 recycles in approximately 3 h. Approximately 20% of the SNAP25 resides in a perinuclear recycling endosome-trans-Golgi network (TGN) compartment from which it recycles back to the plasma membrane. SNAP25 internalization occurs by constitutive, dynamin-independent endocytosis that is distinct from the dynamin-dependent endocytosis that retrieves secretory vesicle constituents after exocytosis. Endocytosis of SNAP25 is regulated by ADP-ribosylation factor (ARF)6 (through phosphatidylinositol bisphosphate synthesis) and is dependent upon F-actin. SNAP25 endosomes, which exclude the plasma membrane SNARE syntaxin 1A, merge with those derived from clathrin-dependent endocytosis containing endosomal syntaxin 13. Our results characterize a robust ARF6-dependent internalization mechanism that maintains an intracellular pool of SNAP25, which is compatible with possible intracellular roles for SNAP25 in neuroendocrine cells.  相似文献   

11.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

12.
SNAREs are clustered membrane proteins essential for intracellular fusion steps. During fusion, three to four SNAREs with a Qa‐, Qb‐, Qc‐ and R‐SNARE‐motif form a complex. The core complex represents a QaQbQcR‐SNARE‐motif bundle, most certainly assembling in steps. However, to date it is unknown which intermediate SNARE complex observed in vitro also exists in vivo. Here we have applied comparative fluorescence recovery after photobleaching (FRAP)‐studies as a novel approach for studying in intact cells a SNARE interaction involved in synaptic vesicle fusion [catalyzed by syntaxin 1A (Qa), SNAP25 (Qb/Qc) and synaptobrevin 2 (R)]. We find that the Qb‐SNARE‐motif of SNAP25 interacts reversibly with clustered syntaxin. The interaction requires most of the alpha helical Qb‐SNARE‐motif and depends on its position within the molecule. We conclude that a zippered QaQb‐SNARE complex represents a short‐lived SNARE intermediate in intact cells, most likely providing an initial molecular platform toward membrane fusion.  相似文献   

13.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.  相似文献   

14.
The fusion of synaptic vesicles with the pre-synaptic plasma membrane mediates the secretion of neurotransmitters at nerve terminals. This pathway is regulated by an array of protein–protein interactions. Of central importance are the soluble NSF ( N -ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) proteins syntaxin 1 and SNAP25, which are associated with the pre-synaptic plasma membrane and vesicle-associated membrane protein (VAMP2), a synaptic vesicle SNARE. Syntaxin 1, SNAP25 and VAMP2 interact to form a tight complex bridging the vesicle and plasma membranes, which has been suggested to represent the minimal membrane fusion machinery. Synaptic vesicle fusion is stimulated by a rise in intraterminal Ca2+ levels, and a major Ca2+ sensor for vesicle fusion is synaptotagmin I. Synaptotagmin is likely to couple Ca2+ entry to vesicle fusion via Ca2+-dependent and independent interactions with membrane phospholipids and the SNARE proteins. Intriguingly, syntaxin 1, SNAP25, VAMP2 and synaptotagmin I have all been reported to be modified by palmitoylation in neurons. In this review, we discuss the mechanisms and dynamics of palmitoylation of these proteins and speculate on how palmitoylation might contribute to the regulation of synaptic vesicle fusion.  相似文献   

15.
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+‐triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+‐dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N‐ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin‐1, SNAP‐25, and synaptobrevin‐2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N‐ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18‐1 and Munc13‐1 orchestrate SNARE complex formation in an NSF‐SNAP‐resistant manner by a mechanism whereby Munc18‐1 binds to synaptobrevin and to a self‐inhibited “closed” conformation of syntaxin‐1, thus forming a template to assemble the SNARE complex, and Munc13‐1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin‐1. Synaptotagmin‐1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.  相似文献   

16.
Exocytosis is one of the most crucial and ubiquitous processes in all of biology. This event is mediated by the formation of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, ternary assemblies of syntaxin, SNAP23/SNAP25 (synaptosomal-associated protein of 23 or 25 kDa), and synaptobrevin. The exocytotic process can be further regulated by complexin, which interacts with the SNARE complex. Complexin is involved in a Ca2+-triggered exocytotic process. In eukaryotic cells, multiple isoforms of SNARE proteins are expressed and are involved in distinct types of exocytosis. To understand the underlying biochemical mechanism of various exocytotic processes mediated by different SNARE protein isoforms, we systematically analyzed the interactions among syntaxin, SNAP23/SNAP25, synaptobrevin, and complexin by employing a newly developed yeast four-hybrid interaction assay. The efficiency of SNARE complex formation and the specificity of complexin binding are regulated by the different SNARE protein isoforms. Therefore, various types of exocytosis, occurring on different time scales with different efficiencies, can be explained by the involved SNARE complexes composed of different combinations of SNARE protein isoforms.  相似文献   

17.
The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex. We now show that the plasma membrane syntaxin and SNAP-25 interact with high affinity and equimolar stoichiometry to form a stable dimer on the pathway to the ternary SNARE complex. In bovine chromaffin cells, syntaxin and SNAP-25 colocalize in defined clusters that average 700 nm in diameter and cover 10% of the plasma membrane. Removal of the C terminus of SNAP-25 by botulinum neurotoxin E, a known neuroparalytic agent, dissociates the target SNARE dimer in vitro and disrupts the SNARE clustering in vivo. Together, our data uncover formation of stable syntaxin/SNAP-25 dimers as a central principle of the SNARE assembly pathway underlying regulated exocytosis.  相似文献   

18.
The vesicular protein synaptobrevin contributes to two mutually exclusive complexes in mature synapses. Synaptobrevin tightly interacts with the plasma membrane proteins syntaxin and SNAP 25 forming the SNARE complex as a prerequisite for exocytotic membrane fusion. Alternatively, synaptobrevin binds to the vesicular protein synaptophysin. It is unclear whether SNARE complex formation is diminished or facilitated when synaptobrevin is bound to synaptophysin. Here we show that the synaptophysin-synaptobrevin complex is increased in adult rat brain after repeated synaptic hyperactivity in the kindling model of epilepsy. Two days after the last kindling-induced stage V seizure the relative amount of synaptophysin-synaptobrevin complex obtained by co-immunoprecipitation from cortical and hippocampal membranes was increased twofold compared to controls. By contrast the relative amounts of various synaptic proteins as well as that of the SNARE complex did not change in membrane preparations from kindled rats compared to controls. The increased amount of synaptophysin-synaptobrevin complex in kindled rats supports the idea that this complex represents a reserve pool for synaptobrevin enabling synaptic vesicles to adjust to an increased demand for synaptic efficiency. We conclude that the synaptophysin-synaptobrevin interaction is involved in activity-dependent plastic changes in adult rat brain.  相似文献   

19.
The role of SNAREs in mammalian constitutive secretion remains poorly defined. To address this, we have developed a novel flow cytometry‐based assay for measuring constitutive secretion and have performed a targeted SNARE and Sec1/Munc18 (SM) protein‐specific siRNA screen (38 SNAREs, 4 SNARE‐like proteins and 7 SM proteins). We have identified the endoplasmic reticulum (ER)/Golgi SNAREs syntaxin 5, syntaxin 17, syntaxin 18, GS27, SLT1, Sec20, Sec22b, Ykt6 and the SM protein Sly1, along with the post‐Golgi SNAREs SNAP‐29 and syntaxin 19, as being required for constitutive secretion. Depletion of SNAP‐29 or syntaxin 19 causes a decrease in the number of fusion events at the cell surface and in SNAP‐29‐depleted cells causes an increase in the number of docked vesicles at the plasma membrane as determined by total internal reflection fluorescence (TIRF) microscopy. Analysis of syntaxin 19‐interacting partners by mass spectrometry indicates that syntaxin 19 can form SNARE complexes with SNAP‐23, SNAP‐25, SNAP‐29, VAMP3 and VAMP8, supporting its role in Golgi to plasma membrane transport or fusion. Surprisingly, we have failed to detect any requirement for a post‐Golgi‐specific R‐SNARE in this process.  相似文献   

20.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号