首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrite reductase (NirK) of Nitrosomonas europaea confers tolerance to nitrite (NO2-). The nirK gene is clustered with three genes of unknown physiological function: ncgABC. At present, this organization is unique to nitrifying bacteria. Here we report that the ncgABC gene products facilitate NirK-dependent NO2- tolerance by reversing the negative physiological effect that is associated with the activity of NirK in their absence. We hypothesize that the ncg gene products are involved in the detoxification of nitric oxide that is produced by NirK.  相似文献   

2.
Nitrite reductase has been separated from cell-free extracts of Nitrosomonas and partially purified from hydroxylamine oxidase by polyacrylamide-gel electrophoresis. In its oxidized state the enzyme, which did not contain haem, had an extinction maximum at 590nm, which was abolished on reduction. Sodium diethyldithiocarbamate was a potent inhibitor of nitrite reductase. Enzyme activity was stimulated 2.5-fold when remixed with hydroxylamine oxidase, but was unaffected by mammalian cytochrome c. The enzyme also exhibited a low hydroxylamine-dependent nitrite reductase activity. The results suggest that this enzyme is similar to the copper-containing ;denitrifying enzyme' of Pseudomonas denitrificans. A dithionite-reduced, 465nm-absorbing haemoprotein was associated with homogeneous preparations of hydroxylamine oxidase. The band at 465nm maximum was not reduced during the oxidation of hydroxylamine although the extinction was abolished on addition of hydroxylamine, NO(2) (-) or CO. These last-named compounds when added to the oxidized enzyme precluded the appearance of the 465nm-absorption band on addition of dithionite. Several properties of 465nm-absorbing haemoprotein are described.  相似文献   

3.
4.
Global gene expression was compared between the Nitrosomonas europaea wild type and a nitrite reductase-deficient mutant using a genomic microarray. Forty-one genes were differentially regulated between the wild type and the nirK mutant, including the nirK operon, genes for cytochrome c oxidase, and seven iron uptake genes. Relationships of differentially regulated genes to the nirK mutant phenotype are discussed.  相似文献   

5.
Nitrosomonas europaea, an obligate ammonia-oxidizing bacterium, lost an increasing amount of ammonia oxidation activity upon exposure to increasing concentrations of nitrite, the primary product of ammonia-oxidizing metabolism. The loss of activity was specific to the ammonia monooxygenase (AMO) enzyme, as confirmed by a decreased rate of NH4+-dependent O2 consumption, some loss of active AMO molecules observed by polypeptide labeling with 14C2H2, the protection of activity by substrates of AMO, and the requirement for copper. The loss of AMO activity via nitrite occurred under both aerobic and anaerobic conditions, and more activity was lost under alkaline than under acidic conditions except in the presence of large concentrations (20 mM) of nitrite. These results indicate that nitrite toxicity in N. europaea is mediated by a unique mechanism that is specific for AMO.  相似文献   

6.
7.
Aluminum (Al) inhibits plant growth partly by causing oxidative damage that is promoted by reactive oxygen species and can be prevented by improving antioxidant capacity. Ascorbic acid (AsA), the most abundant antioxidant in plants, is regenerated by the action of monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR). We investigated the role of MDAR and DHAR in AsA regeneration during Al stress using transgenic tobacco (Nicotiana tabacum) plants overexpressing Arabidopsis cytosolic MDAR (MDAR-OX) or DHAR (DHAR-OX). DHAR-OX plants showed better root growth than wild-type (SR-1) plants after exposure to Al for 2 weeks, but MDAR-OX plants did not. There was no difference in Al distribution and accumulation in the root tips among SR-1, DHAR-OX, and MDAR-OX plants after Al treatment for 24 h. However, DHAR-OX plants showed lower hydrogen peroxide content, less lipid peroxidation and lower level of oxidative DNA damage than SR-1 plants, whereas MDAR-OX plants showed the same extent of damage as SR-1 plants. Compared with SR-1 plants, DHAR-OX plants consistently maintained a higher AsA level both with and without Al exposure, while MDAR-OX plants maintained a higher AsA level only without Al exposure. Also, DHAR-OX plants maintained higher APX activity under Al stress. The higher AsA level and APX activity in DHAR-OX plants contributed to their higher antioxidant capacity and higher tolerance to Al stress. These findings show that the overexpression of DHAR, but not of MDAR, confers Al tolerance, and that maintenance of a high AsA level is important to Al tolerance.  相似文献   

8.
To improve the cooperative removal of nitrogen by Nitrosomonas europaea and Paracoccus denitrificans, we controlled their distribution in a tubular gel. When ethanol was supplied inside the tubular gel as an electron donor, their distributions overlapped in the external region of the gel. By changing the electron donor from ethanol to gaseous hydrogen, the distribution of P. denitrificans shifted to the inside of the tube and was separated from that of N. europaea. The separation resulted in an increase of the oxidation rate of ammonia by 25%.  相似文献   

9.
10.
High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H+‐PPase is involved in salt‐stimulated NO3? uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H+‐PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K+/Na+ ratio in leaves and exhibited increased NO3? uptake, inorganic pyrophosphate‐dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up‐regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up‐regulation of H+‐PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland.  相似文献   

11.
Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing.  相似文献   

12.
Abstract Nitrogen regulation of nitrite uptake and nitrite reductase was studied in the cyanobacterium Anabaena cycadeae and its glutamine-auxotrophic mutant. The development of the nitrite-uptake system preceded, and was independent of, the development of nitrate reductase. The levels of both of the systems were higher in the glutamine auxotroph lacking glutamine synthetase (GS) than in the wild-type strain having normal GS activity. The nitrite-uptake system was found to be constitutive and ammonia-repressible whereas the nitrite-reductase system was ammonia-repressible and nitrite-inducible. Ammonia did not inhibit the nitrite-uptake and nitrite reductase activities in the glutamine auxotroph whereas glutamine did so, suggesting that repression of nitrite-uptake and nitrite reductase systems by ammonia requires the operation of GS and probably involves the participation of some organic nitrogen metabolites like glutamine.  相似文献   

13.
14.
An antisense nitrite reductase (NiR, EC 1.7.7.1) tobacco ( Nicotiana tabacum L.) transformant (clone 271) was used to gain insight into a possible correlation between nitrate reductase (NR, EC 1.6.6.1)-dependent nitrite accumulation and nitric oxide (NO(.)) production, and to assess the regulation of signal transduction in response to stress conditions. Nitrite concentrations of clone 271 leaves were 10-fold, and NO(.) emission rates were 100-fold higher than in wild type leaves. Increased protein tyrosine nitration in clone 271 suggests that high NO(.) production resulted in increased peroxynitrite (ONOO(-)) formation. Tyrosine nitration was also observed in vitro by adding peroxynitrite to leaf extracts. As in mammalian cells, NO(.) and derivatives also increased synthesis of proteins like 14-3-3 and cyclophilins, which are both involved in regulation of activity and stability of enzymes.  相似文献   

15.
16.
17.
Little is known about the intracellular events that occur following the initial inhibition of Mycobacterium tuberculosis by the first-line antituberculosis drugs isoniazid (INH) and ethambutol (EMB). Understanding these pathways should provide significant insights into the adaptive strategies M. tuberculosis undertakes to survive antibiotics. We have discovered that the M. tuberculosis iniA gene (Rv 0342) participates in the development of tolerance to both INH and EMB. This gene is strongly induced along with iniB and iniC (Rv 0341 and Rv 0343) by treatment of Mycobacterium bovis BCG or M. tuberculosis with INH or EMB. BCG strains overexpressing M. tuberculosis iniA grew and survived longer than control strains upon exposure to inhibitory concentrations of either INH or EMB. An M. tuberculosis strain containing an iniA deletion showed increased susceptibility to INH. Additional studies showed that overexpression of M. tuberculosis iniA in BCG conferred resistance to ethidium bromide, and the deletion of iniA in M. tuberculosis resulted in increased accumulation of intracellular ethidium bromide. The pump inhibitor reserpine reversed both tolerance to INH and resistance to ethidium bromide in BCG. These results suggest that iniA functions through an MDR-pump like mechanism, although IniA does not appear to directly transport INH from the cell. Analysis of two-dimensional crystals of the IniA protein revealed that this predicted transmembrane protein forms multimeric structures containing a central pore, providing further evidence that iniA is a pump component. Our studies elucidate a potentially unique adaptive pathway in mycobacteria. Drugs designed to inhibit the iniA gene product may shorten the time required to treat tuberculosis and may help prevent the clinical emergence of drug resistance.  相似文献   

18.
19.
Cation diffusion facilitator (CDF) proteins are a recently discovered family of cation efflux transporters that might play an essential role in metal homeostasis and tolerance. Here, we describe the identification, characterization, and localization of PtdMTP1, a member of the CDF family from the hybrid poplar Populus trichocarpa x Populus deltoides. PtdMTP1 is expressed constitutively and ubiquitously, although at low levels. Heterologous expression in yeast showed that PtdMTP1 was able to complement the hypersensitivity of mutant strains to Zn but not to other metals, including Cd, Co, Mn, and Ni. PtdMTP1 fused to green fluorescent protein localized to the vacuolar membrane both in yeast and in plant cells, consistent with a function of PtdMTP1 in zinc sequestration. Overexpression of PtdMTP1 in Arabidopsis confers Zn tolerance. We show that PtdMTP1, when expressed in yeast and Arabidopsis, forms homooligomers, a novel feature of CDF members. Oligomer formation is disrupted by reducing agents, indicating possible disulfide bridge formation. PtdMTP1 also contains a conserved Leu zipper motif. Although not necessary for oligomer formation, Leu residues within this motif are required for PtdMTP1 functional activity.  相似文献   

20.
An expression vector for the luxAB genes, derived from Vibrio harveyi, was introduced into Nitrosomonas europaea. Although the recombinant strain produced bioluminescence due to the expression of the luxAB genes under normal growing conditions, the intensity of the light emission decreased immediately, in a time-and dose-dependent manner, with the addition of ammonia monooxygenase inhibitors, such as allylthiourea, phenol, and nitrapyrin. When whole cells were challenged with several nitrification inhibitors and toxic compounds, a close relationship was found between the change in the intensity of the light emission and the level of ammonia-oxidizing activity. The response of bioluminescence to the addition of allylthiourea was considerably faster than the change in the ammonia-oxidizing rate, measured as both the O2 uptake and NO2 production rates. The bioluminescence of cells inactivated by ammonia monooxygenase inhibitor was recovered rapidly by the addition of certain substrates for hydroxylamine oxidoreductase. These results suggested that the inhibition of bioluminescence was caused by the immediate decrease of reducing power in the cell due to the inactivation of ammonia monooxygenase, as well as by the destruction of other cellular metabolic pathways. We conclude that the assay system using luminous Nitrosomonas can be applied as a rapid and sensitive detection test for nitrification inhibitors, and it will be used to monitor the nitrification process in wastewater treatment plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号