首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shading (variations of image intensity) provides an important cue for understanding the shape of three-dimensional surfaces from monocular views. On the other hand, texture (distribution of discontinuities on the surface) is a strong cue for recovering surface orientation by using monocular images. But given the image of an object or scene, what technique should we use to recover the shape of what is image? Resolution of shape from shading requires knowledge of the reflectance of the imaged surface and, usually, the fact that it is smooth (i.e. it shows no discontinuities). Determination of shape from texture requires knowledge of the distribution of surface markings (i.e. discontinuities). One might expect that one method would work when the other does not. I present a theory on how an active observer can determine shape from the image of an object or scene regardless of whether the image is shaded, textured, or both, and without any knowledge of reflectance maps or the distribution of surface markings. The approach is successful because the active observer is able to manipulate the constraints behind the perceptual phenomenon at hand and thus derive a simple solution. Several experimental results are presented with real and synthetic images.  相似文献   

2.
The visual system can extract information about shape from the pattern of light and dark surface shading on an object. Very little is known about how this is accomplished. We have used a learning algorithm to construct a neural network model that computes the principal curvatures and orientation of elliptic paraboloids independently of the illumination direction. Our chief finding is that receptive fields developed by units of such model network are surprisingly similar to some found in the visual cortex. It appears that neurons that can make use of the continuous gradations of shading have receptive fields similar to those previously interpreted as dealing with contours (i.e. 'bar' detectors or 'edge' detectors). This study illustrates the difficulty of deducing neuronal function within a network solely from receptive fields. It is also important to consider the pattern of connections a neuron makes with subsequent stages, which we call the 'projective field'.  相似文献   

3.
Observers judged the slants and tilts of numerous regions within shaded images of ellipsoid surfaces that varied in shape, orientation, surface reflectance, and direction of illumination. The perceived three-dimensional structure of each surface was calculated from these judgments. Much of the error in observers' responses resulted from a tendency to perceive surfaces whose axes were aligned with the display screen. The presence of specular highlights or cast shadows, in contrast, had no effect on performance. The results of the experiment indicate that several assumption of certain formal models for perception of shape from shading are not psychologically valid. The most notable of these assumptions are that the visual system initially assumes that all surfaces have Lambertian reflectance and that illuminant direction must be known before shape detection can proceed. These assumptions are often accompanied by a third assumption that surface orientation is detected locally, and global shape determined by smoothing over local surface orientation estimates. The present experiment indicates that an alternative approach offered by Koenderink and van Doorn may be more psychologically accurate, as it avoids all three assumptions.Supported in part by the Air Force Office of Scientific Research (AFOSR 82-0148). The research reported in this paper was performed while the first author was a graduate student at the University of Connecticut at Storrs  相似文献   

4.
Perception of the body's outline and three-dimensional shape arises from visual cues such as shading, contour, perspective and texture. When a uniformly coloured prey animal is illuminated from above by sunlight, a shadow may be cast on the body, generating a brightness contrast between the dorsal and ventral surfaces. For animals such as caterpillars, which live among flat leaves, a difference in reflectance over the body surface may degrade the degree of background matching and provide cues to shape from shading. This may make otherwise cryptic prey more conspicuous to visually hunting predators. Cryptically coloured prey are expected to match their substrate in colour, pattern and texture (though disruptive patterning is an exception), but they may also abolish self-shadowing and therefore either reduce shape cues or maintain their degree of background matching through countershading: a gradation of pigment on the body of an animal so that the surface closest to illumination is darker. In this study, we report the results from a series of field experiments where artificial prey resembling lepidopteran larvae were presented on the upper surfaces of beech tree branches so that they could be viewed by free-living birds. We demonstrate that countershading is superior to uniform coloration in terms of reducing attack by free-living predators. This result persisted even when we fixed prey to the underside of branches, simulating the resting position of many tree-living caterpillars. Our experiments provide the first demonstration, in an ecologically valid visual context, that shadowing on bodies (such as lepidopteran larvae) provides cues that visually hunting predators use to detect potential prey species, and that countershading counterbalances shadowing to enhance cryptic protection.  相似文献   

5.
Harding G  Harris JM  Bloj M 《PloS one》2012,7(4):e35950
The luminance and colour gradients across an image are the result of complex interactions between object shape, material and illumination. Using such variations to infer object shape or surface colour is therefore a difficult problem for the visual system. We know that changes to the shape of an object can affect its perceived colour, and that shading gradients confer a sense of shape. Here we investigate if the visual system is able to effectively utilise these gradients as a cue to shape perception, even when additional cues are not available. We tested shape perception of a folded card object that contained illumination gradients in the form of shading and more subtle effects such as inter-reflections. Our results suggest that observers are able to use the gradients to make consistent shape judgements. In order to do this, observers must be given the opportunity to learn suitable assumptions about the lighting and scene. Using a variety of different training conditions, we demonstrate that learning can occur quickly and requires only coarse information. We also establish that learning does not deliver a trivial mapping between gradient and shape; rather learning leads to the acquisition of assumptions about lighting and scene parameters that subsequently allow for gradients to be used as a shape cue. The perceived shape is shown to be consistent for convex and concave versions of the object that exhibit very different shading, and also similar to that delivered by outline, a largely unrelated cue to shape. Overall our results indicate that, although gradients are less reliable than some other cues, the relationship between gradients and shape can be quickly assessed and the gradients therefore used effectively as a visual shape cue.  相似文献   

6.
Attenuated total reflectance (ATR) infrared absorbance spectroscopy of proteins in aqueous solution is much easier to perform than transmission spectroscopy, where short path‐length cells need to be assembled reproducibly. However, the shape of the resulting ATR infrared spectrum varies with the refractive index of the sample and the instrument configuration. Refractive index in turn depends on the absorbance of the sample. In this work, it is shown that a room temperature triglycine sulfate detector and a ZnSe ATR unit can be used to collect reproducible spectra of proteins. A simple method for transforming the protein ATR spectrum into the shape of the transmission spectrum is also given, which proceeds by approximating a Kramers‐Krönig–determined refractive index of water as a sum of four linear components across the amide I and II regions. The light intensity at the crystal surface (with 45° incidence) and its rate of decay away from the surface is determined as a function of the wave number–dependent refractive index as well as the decay of the evanescent wave from the surface. The result is a single correction factor at each wave number. The spectra were normalized to a maximum of 1 between 1600 cm?1 and 1700 cm?1 and a self‐organizing map secondary structure fitting algorithm, SOMSpec, applied using the BioTools reference set. The resulting secondary structure estimates are encouraging for the future of ATR spectroscopy for biopharmaceutical characterization and quality control applications.  相似文献   

7.
When judging the lightness of objects, the visual system has to take into account many factors such as shading, scene geometry, occlusions or transparency. The problem then is to estimate global lightness based on a number of local samples that differ in luminance. Here, we show that eye fixations play a prominent role in this selection process. We explored a special case of transparency for which the visual system separates surface reflectance from interfering conditions to generate a layered image representation. Eye movements were recorded while the observers matched the lightness of the layered stimulus. We found that observers did focus their fixations on the target layer, and this sampling strategy affected their lightness perception. The effect of image segmentation on perceived lightness was highly correlated with the fixation strategy and was strongly affected when we manipulated it using a gaze-contingent display. Finally, we disrupted the segmentation process showing that it causally drives the selection strategy. Selection through eye fixations can so serve as a simple heuristic to estimate the target reflectance.  相似文献   

8.
披针叶茴香叶绿素荧光参数对不同光环境的响应   总被引:1,自引:0,他引:1  
以天目山披针叶茴香(Illicium lanceolatum)4年生栽培幼苗为对象,经不同光环境(自然全光照,50%光照和20%光照)处理后,采用雅欣理1611植物效率仪测试,并进行光系统Ⅱ(PSⅡ)快速叶绿素荧光诱导动力学分析(JIP-test),以探讨其光适应机制,为高莽草酸含量植株高效栽培技术提供理论依据。结果显示:(1)随着遮光程度增加,披针叶茴香叶片叶绿素a(Chl a)、叶绿素b(Chl b)和总叶绿素含量(Chl(a+b))呈上升趋势,均与全光照存在显著差异;Chl a/Chl b值分别降低了22.92%和31.56%,均与全光照差异极显著。(2)随遮光程度增强,PSⅡ最大光能转换效率(Fv/Fm)降低,50%和20%光照处理的Fv/Fm值分别比全光照下降了1.34%和2.79%,且20%光照处理与全光照差异显著。(3)随遮光程度增强,50%光照和20%光照处理叶片单位面积光合机构含有的反应中心数目(RC/CSo)分别比全光照减少了2.94%和13.63%,单位反应中心以热能形式耗散的能量(DIo/RC)分别增加了2.2%和62.9%。研究表明,50%光照处理下披针叶茴香叶片用于光合电子传递的能量占吸收光能的比例变化不显著,而在20%光照处理则显著降低,即50%遮光环境有利于披针叶茴香提高光能利用效率,促进其生长和增加生物量积累。  相似文献   

9.
To examine the effect of illumination direction on the ability of observers to discriminate between faces, we manipulated the direction of illumination on scanned 3D face models. In order to dissociate the surface reflectance and illumination components of front-view face images, we introduce a symmetry algorithm that can separate the symmetric and asymmetric components of the face in both low and high spatial frequency bands. Based on this approach, hybrid faces stimuli were constructed with different combinations of symmetric and asymmetric spatial content. Discrimination results with these images showed that asymmetric illumination information biased face perception toward the structure of the shading component, while the symmetric illumination information had little, if any, effect. Measures of perceived depth showed that this property increased systematically with the asymmetric but not the symmetric low spatial frequency component. Together, these results suggest that (1) the asymmetric 3D shading information dramatically affects both the perceived facial information and the perceived depth of the facial structure; and (2) these effects both increase as the illumination direction is shifted to the side. Thus, our results support the hypothesis that face processing has a strong 3D component.  相似文献   

10.
太阳辐射对稻田甲烷排放的影响   总被引:1,自引:0,他引:1  
马莉  娄运生  李君  李睿  张震 《应用生态学报》2019,30(8):2725-2736
太阳辐射减弱是气候变化的主要特征之一,而太阳辐射减弱对稻田甲烷(CH4)排放的影响尚不明确,且缺少高光谱遥感用于估算稻田CH4排放的研究.通过田间模拟试验,研究了不同遮阴强度对稻田CH4排放和水稻冠层光谱特征的影响,并基于冠层高光谱数据估算了CH4排放通量.采用单因子试验设计,遮阴强度设3个水平,即对照(不遮阴,CK)、轻度遮阴(S1,单层遮阴,遮阴率为60%)和重度遮阴(S2,双层遮阴,遮阴率为84%).结果表明:与对照相比,遮阴明显降低了稻田CH4排放,但重度遮阴下CH4排放高于轻度遮阴;近红外波段水稻冠层反射率表现为CK>S2>S1;水稻冠层光谱反射率(699~1349 nm)与CH4排放通量呈极显著正相关,最高相关系数达0.64,6种植被指数与CH4排放通量也呈极显著相关,其中比值植被指数(RVI)与CH4排放通量的相关系数最大,达0.84;建立了以RVI、归一化植被指数(NDVI)和507 nm原始反射率(ρ507)为参数估算CH4排放通量的逐步回归模型,决定系数R2分别为0.86和0.85,利用该模型可为开展区域稻田温室气体排放的遥感监测提供试验依据.  相似文献   

11.
通过气体交换、叶绿素荧光、反射光谱和显微技术等研究了叶片发育与花青素强光诱导的关系及其对激发能分配的影响。结果表明,遮荫导致紫罗勒叶片变薄,花青素含量显著降低。当弱光下生长的植株转入强光后,转光前发育成熟的叶片花青素含量很低,而此后强光下发育成熟的叶片花青素含量高。转强光后,弱光下发育成熟的叶片光合速率低、光抑制严重,且天线耗散增强;强光下发育成熟的叶片净光合速率高,光抑制程度轻,天线耗散低。因此,我们认为叶片发育影响紫罗勒花青素合成的强光诱导,而转强光后花青素的诱导差异进一步改变了光合作用过程中的激发能分配。  相似文献   

12.
The shape of a plant cell has long been the cornerstone of diverse areas of plant research but it is only recently that molecular-genetic and cell-biological tools have been effectively combined for dissecting plant cell morphogenesis. Increased understanding of the polar growth characteristics of model cell types, the availability of many morphological mutants and significant advances in fluorescent-protein-aided live-cell visualization have provided the major impetus for these analyses. The cytoskeleton and its regulators have emerged as essential components of the scaffold involved in fabricating plant cell shape. In this article, I collate information from recent discoveries to derive a simple cytoskeleton-based operational framework for plant cell morphogenesis.  相似文献   

13.
Traditionally the intensity discontinuities in an image are detected as zero-crossings of the second derivative with the help of a Laplacian of Gaussian (LOG) operator that models the receptive field of retinal Ganglion cells. Such zero-crossings supposedly form a raw primal sketch edge map of the external world in the primary visual cortex of the brain. Based on a new operator which is a linear combination of the LOG and a Dirac-delta function that models the extra-classical receptive field of the ganglion cells, we find that zero-crossing points thus generated, store in presence of noise, apart from the edge information, the shading information of the image in the form of density variation of these points. We have also shown that an optimal image contrast produces best mapping of the shading information to such zero-crossing density variation for a given amount of noise contamination. Furthermore, we have observed that an optimal amount of noise contamination reproduces the minimum optimal contrast and hence gives rise to the best representation of the original image. We show that this phenomenon is similar in nature to that of stochastic resonance phenomenon observed in psychophysical experiments.  相似文献   

14.
We used contrast-agent enhanced functional magnetic resonance imaging (fMRI) in the alert monkey to map the cortical regions involved in the extraction of 3D shape from the monocular static cues, texture and shading. As in the parallel human imaging study [1], we contrasted the 3D condition to several 2D control conditions. The extraction of 3D shape from texture (3D SfT) involves both ventral and parietal regions, in addition to early visual areas. Strongest activation was observed in CIP, with decreasing strength towards the anterior part of the intraparietal sulcus (IPS). In the ventral stream 3D SfT sensitivity was observed in a ventral portion of TEO. The extraction of 3D shape from shading (3D SfS) involved predominantly ventral regions, such as V4 and a dorsal potion of TEO. These results are similar to those obtained earlier in human subjects and indicate that the extraction of 3D shape from texture is performed in both ventral and dorsal regions for both species, as are the motion and disparity cues, whereas shading is mainly processed in the ventral stream.  相似文献   

15.
The function of many intrinsic membrane proteins requires a conformational transition that is often strongly influenced by the molecular composition of the bilayer in which the protein is embedded. Recently, a mechanism for this shift in conformational equilibrium was suggested, in which it is argued that a shift in distribution of lateral pressures of the bilayer resulting from a change in lipid composition alters the amount of mechanical work of the protein conformational transition, if the change in the cross-sectional area profile of the protein varies with depth within the bilayer. As there is little information on the change in shape of the transmembrane region of any protein, various simple geometric models are considered. For both a generic model, and more specific models that approximate likely cooperative rearrangements of alpha-helices in bundles, it is found that the conformational equilibrium depends on the first and second integral moments of the lateral pressure distribution. In addition to revealing the possible physical underpinnings of the well-known correlation between protein activity and the 'nonlamellar' tendency of bilayer lipids, this dependence on moments of the pressure profile allows for prediction of the relative effects of different lipid compositional changes even in the absence of information on specific protein shape changes. Effects of variation in acyl chain length, degree and position of cis-unsaturation, and addition of cholesterol and small interfacially-active solutes (n-alkanols) are compared.  相似文献   

16.
I present a model of stochastic community dynamics in which death occurs randomly in the community, propagules disperse randomly from a regional pool, and recruitment of new individuals of a species is proportional to the species local abundance multiplied by its local competitive ability. The competitive ability of a species is assumed to be determined by a function of one trait of the species, and I call this function the environmental filtering function. I show that information on local species abundances in a network of plots, together with trait data for each species, enables the inference of both the immigration rate and the environmental filtering function in each plot. I further study how the diversity patterns produced by this model deviate from the neutral predictions, and how this deviation depends on the characteristics of the environmental filtering function. I show that this inference framework is more powerful at detecting trait-based environmental filtering than existing statistical approaches based on trait distributions, and discuss how the predictions of this model could be used to assess environmental heterogeneity in a plot, to detect functionally meaningful trade-offs among species traits, and to test the assumption that there exists a simple relationship between species traits and local competitive ability.  相似文献   

17.
18.
We typically observe large‐scale outcomes that arise from the interactions of many hidden, small‐scale processes. Examples include age of disease onset, rates of amino acid substitutions and composition of ecological communities. The macroscopic patterns in each problem often vary around a characteristic shape that can be generated by neutral processes. A neutral generative model assumes that each microscopic process follows unbiased or random stochastic fluctuations: random connections of network nodes; amino acid substitutions with no effect on fitness; species that arise or disappear from communities randomly. These neutral generative models often match common patterns of nature. In this paper, I present the theoretical background by which we can understand why these neutral generative models are so successful. I show where the classic patterns come from, such as the Poisson pattern, the normal or Gaussian pattern and many others. Each classic pattern was often discovered by a simple neutral generative model. The neutral patterns share a special characteristic: they describe the patterns of nature that follow from simple constraints on information. For example, any aggregation of processes that preserves information only about the mean and variance attracts to the Gaussian pattern; any aggregation that preserves information only about the mean attracts to the exponential pattern; any aggregation that preserves information only about the geometric mean attracts to the power law pattern. I present a simple and consistent informational framework of the common patterns of nature based on the method of maximum entropy. This framework shows that each neutral generative model is a special case that helps to discover a particular set of informational constraints; those informational constraints define a much wider domain of non‐neutral generative processes that attract to the same neutral pattern.  相似文献   

19.
Summary The spectral characteristics of the pupil mechanism in blowfly photoreceptors and their dependence on light intensity have been investigated together with the intensity dependence of the receptor potential. The threshold for the pupil response as measured by reflectance is found at an intensity at which the peak of the receptor potential is about half maximal and the plateau potential starts to saturate. The reflectance saturates at about 3 log-units above threshold. The reflectance spectrum peaks near 620 nm, and its shape is independent of adaptation intensity. The absorbance change, measured by transmission, is extreme in the blue, at about 470 nm. The shape of the absorbance spectrum is slightly intensity dependent, presumably due to optical waveguide effects. The dynamic ranges of the light-induced reflectance and absorbance changes do not coincide. The reflectance change shows saturation at least 1 to 1.5 log units before the absorbance change saturates.  相似文献   

20.
Avian visual sensitivity encompasses both the human visible range (400–700 nm) and also near‐ultraviolet (UV) wavelengths (320–400 nm) invisible to normal humans. I used reflectance spectrophotometry to assess variation in UV reflectance for yellow, orange and red plumage in 67 species of tanager (Passeriformes). Previous chemical studies, and my analysis of reflectance minima, suggest that carotenoids are the dominant pigments in yellow, orange and red tanager plumage. Spectra recorded over the range of wavelengths to which birds are sensitive (320–700 nm) were invariably bimodal, with both a plateau of high reflectance at longer (> 500 nm) wavelengths and a distinct secondary peak at UV (< 400 nm) wavelengths. Within this overall framework, variation in UV reflectance was expressed within well‐defined quantitative limits: (1) peak reflectance was always lower than the corresponding plateau of reflectance at longer visible wavelengths; (2) the intensity of peak reflectance declined steadily below 350 nm; (3) wavelengths of peak reflectance clustered between 350 and 370 nm. Significant correlations were detected between various measures of total reflectance in the UV and visible wavebands, but not between various measures of spectral location of UV and visible reflectance. I propose that the strong absorption band at short visible wavelengths (~ 380–550 nm) responsible for bimodal spectra of carotenoids in vitro is also responsible for bimodal reflectance by carotenoid‐based plumage colours. The construction of the UV and visible reflectance bands from different sides of this same absorbance band provides a mechanism for the observed covariation between UV and visible wavelengths. Lack of an association between the spectral locations of the UV and visible reflectance bands may result from the limited variation in spectral location of the UV band. These patterns suggest that plumage colours are subject to constraints, just as are more traditional morphological characters. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 243–257.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号