首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alteration of the radiation-induced changes in wound contraction, collagen synthesis and wound histology by ascorbic acid was studied in mice exposed to 10, 16 and 20 Gy of fractionated (2 Gy/fraction) gamma radiation. The animals were given double-distilled water or ascorbic acid daily before exposure to 2 Gy/day of fractionated irradiation. A full-thickness skin wound was created on the dorsum of the irradiated mice, and the progression of wound contraction and collagen synthesis were examined and histological evaluations were carried out at various times after wounding. Irradiation caused a dose-dependent delay in wound contraction, and pretreatment with ascorbic acid resulted in a significant increase in wound contraction. The greatest increase in wound contraction was observed 6 and 9 days after wounding in both groups. Pretreatment with ascorbic acid augmented the synthesis of collagen significantly as revealed by an increase in hydroxyproline content. The collagen deposition and fibroblast and vasculature densities declined in a dose-dependent manner in groups receiving radiation alone as indicated by histological evaluation. Pretreatment with ascorbic acid ameliorated the observed effect significantly. These studies demonstrate that pretreatment with ascorbic acid resulted in a significant reduction of radiation-induced delay in wound healing as shown by earlier wound closure and increased collagen content and fibroblast and vascular densities.  相似文献   

2.
Assay of radiation effects in mouse skin as expressed in wound healing   总被引:2,自引:0,他引:2  
The effect of 150 kVp X irradiation on the healing of full depth surgical wounds in the lower dorsal skin of the mouse was assayed by measuring the wound strength of seven 2-mm-wide segments along each wound. The strength of unirradiated wounds increased with time in two phases: during the first 2 weeks it reached nearly half of the values recorded from unwounded skin, after which the rate of increase slowed for at least 2 weeks before beginning a second increase. By 150 days, the breaking strength of the wound was about 80% of that of unwounded skin. A single dose of 18 Gy prior to wounding reduced the strength of the wounds to about one-third to one-half that of an unirradiated wounds within the 3 months of follow-up. The effect of irradiation on wound strength did not change as the interval between exposure and wounding was increased to 2 months but decreased slightly when this interval was extended to 3 months. When the healing wound was irradiated within 5 days of surgery, the effect on healing was about the same as with preirradiation; if irradiation was delayed for 12 days after wounding the second phase of healing was only postponed and the wound strength ultimately approached the values recorded from unirradiated wounds. The wound strength of skin preirradiated by X rays and assayed 14 days after wounding showed a clear sigmoid dose response with a threshold between 8 and 10 Gy and a plateau at the maximum effect above 20 Gy. The persistence for at least 3 months of the effect of radiation on wound healing suggests that the tissues involved in the healing process are normally proliferating slowly. The accelerated expression of radiation injury through surgical wounding permits the early quantification of the radiation response of tissues that would normally be delayed in their expression of radiation damage.  相似文献   

3.
Progress in research on radiation combined injury in China   总被引:2,自引:0,他引:2  
Zou Z  Sun H  Su Y  Cheng T  Luo C 《Radiation research》2008,169(6):722-729
The significant feature of radiation combined injury is the occurrence of a combined effect. For decades our institute has focused on studying the key complications of radiation-burn injury, including shock, suppression of hematopoiesis and immunity, gastrointestinal damage and local refractory wound healing. Here we summarize recent advancements in elucidating the mechanisms of and potential treatments for radiation combined injury. Concerning the suppression and regeneration of hematopoiesis in radiation combined injury, mechanisms of megakaryocyte damage have been elucidated and a new type of fusion protein stimulating thrombopoiesis has been developed and is being tested in animals. With regard to the damage and repair of intestinal epithelium, the important molecular mechanisms of radiation combined injury have been clarified, and new measures to prevent and treat gastrointestinal tract injury are proposed. With respect to the difficulties encountered in wound healing, the underlying causes of radiation combined injury have been proposed, and some potential methods to accelerate wound closure are under study. Systemic experiments have been done to determine the appropriate time for eschar excision and skin grafting, and the results provided significant insight into clinical treatment of the injury. In the search for early therapeutic regimens for severe burns and radiation combined injury to prevent deterioration of injuries and to improve survival, cervical sympathetic ganglion block was used for the treatment of animals with radiation combined injury and had significant benefits. These research advancements have potential for application in on-site emergency rescue and in-hospital treatment of radiation combined injury.  相似文献   

4.
It has been established that low concentrations of hydrogen peroxide (H2O2) are produced in wounds and is required for optimal healing. Yet at the same time, there is evidence that excessive oxidative damage is correlated with poor-healing wounds. In this paper, we seek to determine whether topical application of H2O2 can modulate wound healing and if its effects are related to oxidative damage. Using a C57BL/6 mice excision wound model, H2O2 was found to enhance angiogenesis and wound closure at 10 mM but retarded wound closure at 166 mM. The delay in closure was also associated with decreased connective tissue formation, increased MMP-8 and persistent neutrophil infiltration. Wounding was found to increase oxidative lipid damage, as measured by F2-isoprostanes, and nitrative protein damage, as measured by 3-nitrotyrosine. However H2O2 treatment did not significantly increase oxidative and nitrative damage even at concentrations that delay wound healing. Hence the detrimental effects of H2O2 may not involve oxidative damage to the target molecules studied.  相似文献   

5.
To investigate the effects of ionizing radiation on an isolated neuronal network without complicating systemic factors, slices of hippocampus from the guinea pig were isolated and studied in vitro. Slices were irradiated with a 60Co source and compared to paired, sham-irradiated controls. Electrophysiological activity in the CA 1 population of pyramidal cells was evoked by stimulation of the stratum radiatum. Analysis of the somatic and dendritic responses suggested sites of radiation damage. Orthodromically evoked activity was significantly decreased in slices receiving greater than 75 Gy gamma radiation. The effects were dose and dose-rate dependent. At 20 Gy/min, doses of 50 Gy and greater produced synaptic impairment while doses of 75 Gy and greater also produced postsynaptic damage (i.e., the ability of the synaptic response to generate an action potential). A lower dose rate, 5 Gy/min, reduced the sensitivity of synaptic damage to radiation exposure; synaptic impairment required a dose of 100 Gy or greater at the lower dose rate. In contrast, postsynaptic damage was not sensitive to dose rate. This study demonstrates that ionizing radiation can directly affect the integrated functional activity of neurons.  相似文献   

6.
The role of dermal fibroblasts in the expression of radiation-induced damage to the skin was studied. Fibroblasts from neonatal mice were cultured, harvested, and injected into full-depth surgical incisions in the dorsal area of mouse skin, which had been previously locally irradiated by 18 Gy X rays. As a control, cells irradiated with a dose of 20 Gy were also injected. The effect of radiation and fibroblast implants on the gain of skin wound strength was assayed. In an additional experiment freshly isolated cells were implanted. Two weeks following wounding the irradiated skin had reached only about a third of the strength of unirradiated skin. A significant increase of wound strength in irradiated skin was observed when 1.5-2 x 10(6) cultured fibroblasts or freshly isolated fibroblasts were injected into the 20-mm-long wound bed. Irradiated cells had significantly less effect. This suggests that implanting isolated syngeneic cells may "rescue" wounds from the effect of prior irradiation. Semiquantitative immunohistology of types I and III collagen was performed in parallel using a video image digitizing system. Levels of both types I and III collagen were altered in the dermis and the wound tissues in irradiated skin, but the implant of cultured fibroblasts did not affect notably the total levels and the disposition of the two collagen isotypes.  相似文献   

7.
8.
Drosophila melanogaster (fruit fly) is a well-established model organism for genetic studies of development and aging. We examined the effects of lethal ionizing radiation on male and female adult Drosophila of different ages, using doses of radiation from 200 to 1500 Gy. Fifty percent lethality 2 days postirradiation (LD(50/2)) in wild-type 1-day-old adult fruit flies was approximately 1238 Gy for males and 1339 Gy for females. We observed a significant age-dependent decline in the radiation resistance of both males and females. Radiation damage is postulated to occur by the generation of oxygen radicals. An age-related decline in the ability of flies to resist an agent that induces oxygen radicals, paraquat, was observed when comparing 10- and 20-day adults. Female flies are more resistant to paraquat than male flies. Oxidative stress mediated by paraquat was additive with sublethal exposures to radiation in young adults. Therefore, the ability to repair the damage caused by oxygen radicals seems to decline with the age of the flies. Because Drosophila adults are largely post-mitotic, our data suggest that adult Drosophila melanogaster can serve as an excellent model to study the factors responsible for radiation resistance in post-mitotic tissue and age-dependent changes in this resistance.  相似文献   

9.
An adaptive response induced by long-term low-dose-rate irradiation in mice was evaluated in terms of the amount of DNA damage in the spleen analyzed by a comet assay. C57BL/ 6N female mice were irradiated with 0.5 Gy of (137)Cs gamma rays at 1.2 mGy/h; thereafter, a challenge dose (0.4, 0.8 or 1.6 Gy) at a high dose rate was given. Less DNA damage was observed in the spleen cells of preirradiated mice than in those of mice that received the challenge dose only; an adaptive response in terms of DNA damage was induced by long-term low-dose-rate irradiation in mice. The gene expression of catalase and Mn-SOD was significantly increased in the spleen after 23 days of the low-dose-rate radiation (0.5 Gy). In addition, the enzymatic activity of catalase corresponded to the gene expression level; the increase in the activity was observed at day 23 (0.5 Gy). These results suggested that an enhancement of the antioxidative capacities played an important role in the reduction of initial DNA damage by low-dose-rate radiation.  相似文献   

10.
Intestinal inflammation is associated with epithelial damage and formation of mucosal wounds. Epithelial cells migration is required for wound closure. In inflammatory status, migrating epithelial cells are exposed to proinflammatory cytokines such as IFN-gamma. However, influence of such cytokines on intestinal epithelial wound closure remains unknown. The present study was designed to investigate the effect of IFN-gamma on migration of model T84 intestinal epithelial cells and recovery of epithelial wounds. IFN-gamma significantly inhibited rate of T84 cell migration and closure of epithelial wounds. This effect was accompanied by the formation of large aberrant lamellipodia at the leading edge as well as significant decrease in the number of beta(1) integrin containing focal adhesions. IFN-gamma exposure increased endocytosis of beta(1) integrin and shifted its accumulation from early/recycling endosomes at the leading edge to a yet unidentified compartment at the cell base. This redirection in beta(1) integrin transcytosis was inhibited by depolymerization of microtubules with nocodazole and was unaffected by stabilization of microtubules with docetaxel. These results suggest that IFN-gamma attenuates epithelial wound closure by microtubule-dependent redirection of beta(1) integrin transcytosis from the leading edge of migrating cells thereby inhibiting adequate turnover of focal adhesion complexes and cell migration.  相似文献   

11.
12.
TAB182是一个端锚聚合酶1(tankyrase 1)结合蛋白,它在体外能够被tankyrase 1发生二磷酸腺苷核糖基化(PAR)修饰,其生物学功能目前尚不明确.本研究发现,TAB182蛋白水平受电离辐射诱导表达,HeLa细胞经过4 Gy照射处理时,TAB182在2 h表达含量最高; 经过不同剂量照射处理,2 h后2 Gy、4 Gy照射剂量组HeLa细胞中TAB182的表达有明显增加. 通过shRNA沉默HeLa细胞中TAB182基因表达,导致其对4 Gy及以下剂量 辐射的敏感性增加,但对8 Gy大剂量照射的敏感性没有明显变化. 与对照组相比,4 Gy照射诱发TAB182基因沉默细胞的G2/M期阻滞时间显著延长.抑制TAB182表达导致细胞中DNA损伤反应蛋白DNA PKcs、ATM、Chk2的表达水平显著降低. 实验结果提示,TAB182蛋白参与放射DNA损伤信号反应和调控细胞周期G2/M进程.  相似文献   

13.
The ability of the alkaline single-cell gel (SCG) electrophoresis technique to detect single-strand breaks and alkali-labile DNA damage in human cells induced by low doses of radiation was evaluated. Peripheral blood lymphocytes were irradiated with gamma-rays from a 137Cs source at doses from 0.01 to 1 Gy and exposed to alkali (pH greater than 13) for 20, 40 or 60 min and then electrophoresed at 25 V and 300 mA for either 20 or 40 min. The extent of DNA damage that was expressed and detected as DNA migration depended directly on the dose of radiation, the duration of exposure to alkali and the length of electrophoresis. At all experimental conditions tested, it was possible to detect a significant increase in DNA damage induced by a radiation dose as low as 0.05 Gy. Based on an analysis of the ratio of the range to the standard deviation for each radiation dose and experimental condition, the distribution of damage among cells for all doses was neither excessively homogeneous nor heterogeneous. Furthermore, the distribution was independent of radiation treatment. The SCG technique is rapid and sensitive, and useful for investigations concerned with effects of low doses of radiation.  相似文献   

14.
Germline mutation induction at mouse minisatellite loci by paternal low-dose (0.125-1 Gy) exposure to chronic (1.66 x 10(-4) Gy min(-1)) low-linear energy transfer (low-LET) gamma-irradiation and high-LET fission neutrons (0.003 Gy min(-1)) was studied at pre-meiotic stages of spermatogenesis. Both types of radiation produced linear dose-response curves for mutation of the paternal allele. In contrast to previous results using higher doses, the pattern of induction of minisatellite mutation after chronic gamma-irradiation was similar to acute (0.5 Gy min(-1)) exposure to X-rays, indicating that the elevated mutation rate was independent of the ability of the cell to repair damage induced immediately or over a period of up to 100 h. Chronic exposure to fission neutrons was more effective than acute or chronic low-LET exposure (relative biological effectiveness, RBE=3.36). The data also provide strong support for the previous conclusion that increases in minisatellite mutation rate are not caused by radiation-induced DNA damage at minisatellite loci themselves, but rather from damage induced by ionising radiation elsewhere in the genome/cell.  相似文献   

15.
目的:通过直线加速器全身照射昆明小鼠建立辐射损伤模型,探索不同放射剂量对小鼠健康状况及涎腺功能和结构的影响。方法:选取八种不同剂量对昆明小鼠行体外全身照射,于照射后一个月内观察小鼠生长情况、体重变化;照射后一周、一个月检测各组小鼠血象的变化;测定放射半数致死剂量;照射后两个月,测定各组小鼠的唾液流量及唾液淀粉酶含量,并对下颌下腺组织切片行HE染色。结果:13Gy和15Gy照射组小鼠的体重逐渐下降,一周后死亡,其余组小鼠体重最终呈增加趋势。X-射线全身照射的半数致死量为10Gy。照射后一周,照射组小鼠的白细胞数目明显降低,与对照组比较有明显统计学差异(P0.01);在其他血象方面,除了7Gy组外,其他照射组与对照组比较也均有统计学差异(P0.05)。照射一个月后,各照射组小鼠的血象均恢复正常。照射后两个月,9Gy组和11Gy组小鼠的唾液流量及唾液淀粉酶含量均显著低于0Gy组,且11Gy组较9Gy组亦明显降低,差异均有统计学意义(P0.05)。随照射剂量的增加,小鼠的下颌下腺腺泡细胞数目逐步减少,结构排列紊乱,组织损伤逐渐加重。结论:X-射线全身照射引起小鼠健康状况受损,免疫功能减低,损伤程度与放射线强度呈剂量依赖性,小鼠半数致死量为10Gy,该剂量适合建立全身放射损伤模型。  相似文献   

16.
The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation.  相似文献   

17.
The present work is aimed at evaluating the radioprotective effect of curcumin, a naturally occurring phenolic compound on gamma-radiation induced toxicity. The cellular changes were estimated by using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH). The DNA damage was analysed by using cytokinesis blocked micronucleus assay and dicentric aberration (DC). The gamma-radiation at different doses (1, 2 and 4Gy) were found to significantly increase micronuclei (MN), DC frequencies and TBARS level whereas the levels of GSH and antioxidant enzymes were significantly decreased. The maximum damage to lymphocytes was observed at 4Gy irradiation. Curcumin pretreatment (1, 5 and 10microg/ml) significantly decreased the frequency of MN and DC. The levels of TBARS decreased and activities of SOD, CAT and GPx significantly increased along with GSH levels. At 1Gy irradiation all the concentrations of curcumin (1, 5 and 10microg/ml) significantly protected the lymphocytes from radiation damage. At 2Gy irradiation, 5 and 10microg/ml of curcumin showed significant radioprotection. Since the highest damage was observed at 4Gy irradiation both 1 and 5microg/ml of curcumin pretreatment were not sufficient to protect the lymphocytes from radiation damage but 10microg/ml of curcumin significantly protected the cultured lymphocytes from radiation damage. Thus, pretreatment with curcumin gives protection to lymphocytes against gamma-radiation induced cellular damage.  相似文献   

18.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction.  相似文献   

20.
The role of calcium in the process of wound closure in Xenopus early embryos was studied. Embryos were wounded in the presence of the calcium antagonists D-600 and TMB-8 or in calcium-buffered salines, and the effects on wound healing were observed by scanning electron microscopy. D-600 and TMB-8 inhibit wound closure and these antagonists appear to act synergistically since their combined effect is greater than their individual effects. Experiments with calcium-buffered salines suggest that wound closure can proceed in the presence of low extracellular calcium. In all conditions there is a correlation between the degree of wound closure and the shapes of the cells at the wound margin; closing wounds are accompanied by cells elongated radial to the wound, gaping (non-closing) wounds are accompanied by cells stretched tangential to the wound. Thus the results suggest that calcium influx may not be a requirement for the changes in cell shape which accompany, and probably effect, wound closure in Xenopus early embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号