首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of immobilized maltotetraose (G(4))-forming amylase (1,4-alpha-D-glucan maltoteraohydrolase, EC 3.2.1.60) from Pseudomonas stutzeri was investigated in both batch and continous processes. The inactivation process of the immobilized enzyme seemed to obey first-order kinetics, and the immobilized enzyme became more stable when coexisting with 20-30 wt % substrate and calcium ions. From intensive studies on the operational stability in the continuous process, the apparent half-life of G(4) productivity in a constant-flow system was mainly affected by the reaction temperature, substrate concentration, and initial immobilized enzyme activity. A new factor, immobilized enzyme stability factor f(s), was proposed to evaluate the half-life of the immobilized enzyme system.  相似文献   

2.
A bacterial non-heme chloroperoxidase from Serratia marcescens W 250 was immobilized in calcium-alginate gel. Methods for stabilization of the immobilized enzyme were developed, and some kinetic parameters of the immobilized preparations were determined. The enzyme encapsulated into the gel granules in the presence of potassium ferricyanide followed by treatment with glutaraldehyde demonstrated the highest stability under the reaction conditions.  相似文献   

3.
A bacterial non-heme chloroperoxidase from Serratia marcescensW 250 was immobilized in calcium alginate gel. Methods for stabilization of the immobilized enzyme were developed, and some kinetic parameters of the immobilized preparations were determined. The enzyme encapsulated into the gel granules in the presence of potassium ferricyanide followed by treatment with glutaraldehyde demonstrated the highest stability under the reaction conditions.  相似文献   

4.
Summary Cells of the unicellular cyanobacterium Anacystis nidulans were made permeable to ions by treating them with lysozyme and EDTA in a way that leaves the photosynthetic water-splitting function, the photoreduction of exogenous oxidants and the peptidoglycan exoskeleton of the cell virtually intact. The permeabilized cells (permeaplasts) were subsequently immobilized by entrapment in calcium alginate beads. The immobilized preparation exhibits remarkable stability both on storage and in action. On prolonged storage at room temperature in darkness, its photosynthetic activity deteriorates one-third as fast as the activity of immobilized intact cells. Illumination accelerates deactivation. Tested in prolonged runs, however, performed in an illuminated open reactor, alginate-immobilized Anacystis permeaplasts were capable of photoreducing ionic oxidants (ferricyanide) and of exporting ionic reductants (ferrocyanide) to the suspension medium continuously for more than 5 h before being totally inactivated. It is also shown that the major impediment to the photoreduction performance of immobilized permeaplasts arises from diffusion limitations, while the photonic limitation due to light reflection and scattering is approx. 7%.Abbreviations Chl chlorophyll - CSTR continuously stirred tank reactor - EDTA ethylenediaminetetraacetate - FeCN potassium ferricyanide - pBQ p-benzoquinone - PD p-phenylenediamine - PDox p-phenylenediamine in the presence of excess potassium ferricyanide - Hepes N-2-hydroxyethylpiperazine-N-2 ethane-sulphonic acid  相似文献   

5.
Frog epidermis tyrosinase has been immobilized on Enzacryl-AA (a polyacrylamide-based support) and CPG(zirclad)-Arylamine (a controlled pore glass support) in order to stabilize the tyrosine hydroxylase activity of the enzyme; in this way, the immobilized enzyme could be used to synthesize L-dopa from L-tyrosine. The activity immobilization yield Y(IME) (act) (higher than 86%), coupling efficiency (up to 90%), storage stability (no loss in 120 days), and reaction stability (t(1/2) was higher than 20 h in column reactors) were measured for tyrosinase after its immobilization. The results showed a noticeable improvement (in immobilization yield, coupling efficiency, and storage and operational stabilities) over previous reports in which tyrosinase was immobilized for L-dopa production. The activity and stability of immobilized enzyme preparations working in three different reactor types have been compared when used in equivalent conditions with respect to a new proposed parameter of the reactor (R(p)), which allows different reactor configurations to be related to the productivity of the reactor during its useful life time. The characteristic reaction inactivation which soluble tyrosinase shows after a short reaction time has been avoided by immobilization, and the stabilization was enhanced by the presence of ascorbate. However, another inactivation process appeared after a prolonged use of the immobilized enzyme. The effects of reactor type and operating conditions on immobilized enzyme activity and stability are discussed.  相似文献   

6.
Lactate dehydrogenase (EC 1.1.1.27) has been immobilized in polyacrylamide gels over a platinum grid matrix. The immobilized enzyme is used to oxidize L-lactate in the presence of nicotinamide adenine dinucleotide (NAD+) and ferricyanide. The NADH produced is then chemically oxidized back to NAD+ by ferricyanide. The coupled reduction of ferricyanide ions to ferrocyanide ions results in a measurable electrochemical potential. This measurable zero-current potential is found to be Nernstian in nature and directly proportional to the logarithm values of L-lactate concentration over the range of 2 X 10(-5) to 5 X 10(-2)M. The results indicate that immobilized lactate dehydrogenase can be incorporated into a system to detect L-lactate acid in aqueous solutions.  相似文献   

7.
Bovine liver catalase was immobilized on different supports. The tetrameric nature of this enzyme was found to cause its rapid inactivation in diluted conditions due to subunit dissociation, a fact that may rule out its industrial use. Multi-subunit immobilization using highly activated glyoxyl agarose was not enough to involve all enzyme subunits. In fact, washing the derivative produced a strong decrease in the enzyme activity. Further cross-linking of previously immobilized enzyme with tailor-made dextran-aldehyde permitted the multimeric structure to be fully stabilized using either multisubunit preparations immobilized onto highly activated glyoxyl-agarose support or one subunit enzymes immobilized onto poorly activated glyoxyl-agarose. The highest stability of the final biocatalyst was observed using the multisubunit immobilized derivative cross-linked with dextran-aldehyde. The optimal derivative retained around 60% of the immobilized activity, did not release any enzyme subunits after boiling in the presence of SDS, and did not lose activity during washing, and its stability did not depend on the dilution. This derivative was used for 10 cycles in the destruction of 10 mM hydrogen peroxide without any decrease in the enzyme activity.  相似文献   

8.
Biocatalyst inactivation is inherent to continuous operation of immobilized enzyme reactors, meaning that a strategy must exist to ensure a production of uniform quality and constant throughput. Flow rate can be profiled to compensate for enzyme inactivation maintaining substrate conversion constant. Throughput can be maintained within specified margins of variation by using several reactors operating in parallel but displaced in time. Enzyme inactivation has been usually modeled under non-reactive conditions, leaving aside the effect of substrate and products on enzyme stability. Results are presented for the design of enzyme reactors under the above operational strategy, considering first-order biocatalyst inactivation kinetics modulated by substrate and products. The continuous production of hydrolyzed-isomerized whey permeate with immobilized lactase and glucose isomerase in sequential packed-bed reactors is used as a case study. Kinetic and inactivation parameters for immobilized lactase have been determined by the authors; those for glucose isomerase were taken from the literature. Except for lactose, all other substrates and products were positive modulators of enzyme stability. Reactor design was done by iteration since it depends on enzyme inactivation kinetics. Reactor performance was determined based on a preliminary design considering non-modulated first-order inactivation kinetics and confronted to such pattern. The new pattern of inactivation was then used to redesign the reactor and the process repeated until reactor performance (considering modulation) matched the assumed pattern of inactivation. Convergence was very fast and only two iterations were needed.  相似文献   

9.
Summary Partially purified flounder muscle (Pseudopleuronectus americanus) glyceraldehyde 3-phosphate dehydrogenase was immobilized on cyanogen bromide-activated Sepharose. The catalytic properties of the immobilized preparation were studied to determine if immobilization alters the kinetic properties of the native holoenzyme. The results indicate that the pH activity profile of immobilized glyceraldehyde 3-phosphate dehydrogenase did not differ from that of the native enzyme. The Michaelis constants (Km) for NAD and glyceraldehyde 3-phosphate were somewhat altered. The enzyme stability toward various inactivation treatments in the presence and absence of NAD was characterized and compared to that of he native enzyme. When either form of the enzyme was incubated with urea at concentrations greater than 2m, inactivation occurred very rapidly. Incubation in 0.1% trypsin for 60 minutes decreased the activity of immobilized glyceraldehyde 3-phosphate dehydrogenase by 45% and of the native soluble enzyme by 70%. The immobilized enzyme also exhibited considerably more stability than the native soluble enzyme when exposed to a temperature of 50° or to 20 mm ATP. In all cases NAD either greatly reduced the rate of inactivation or completely protected the enzyme from inactivation.  相似文献   

10.
Cells and partially purified α-amylase (EC 3.2.1.1) of the producer strain, Lactobacillus cellobiosus D-39 were immobilized on acrylamide gel. The enzyme showed marked improvement in operational stability. Both immobilized cells and enzyme were stable for a long period and no appreciable loss activity was detected on keeping at 4°C for 4 months. The amylase activity of immobilized cells and enzyme attained maximum at pH 6.0 and 7.6 respectively and at temperature 60°C for both cases. The effects of various solvents, detergent and metal ions were tested; Triton X-100 gave maximum stimulation of the enzyme activity of immobilized cells whereas metal ions exhibited no such enhancement for either of immobilized cells or enzyme.  相似文献   

11.
Multimeric catalase from Aspergillus niger was immobilized on CNBr activated agarose, increasing the enzyme stability. However, it was found that some enzyme subunits could be desorbed to the supernatant after boiling the enzyme preparation in the presence of SDS or during thermal inactivation. Moreover, a positive enzyme concentration-enzyme stability correlation was detected in the immobilized preparation. This suggested the existence of some dissociation mechanism as a first step in the enzyme inactivation. The treatment of the immobilized enzyme with aldehyde–dextran permitted to fully stabilize its multimeric structure, but even this preparation exhibited an enzyme concentration-stability correlation. The presence of EDTA reduced the enzyme stability, suggesting that some cation could be involved in enzyme stability. It was found that 10 mM Zn2+ increased the enzyme stability of this immobilized–stabilized preparation. Now, the dilution of the biocatalyst did not produce a reduction in the enzyme stability.Thus, we have prepared an immobilized enzyme that does not release any subunit to the medium even after inactivation, and found that Zn2+ has a very positive effect on the stability of this immobilized–stabilized enzyme.  相似文献   

12.
NADH-cytochrome b5 reductase from hog gastric microsomes was studied with respect to substrate dependence, optimum pH, thermal denaturation as well as anti-cytochrome b5 antibodies and different ions. The reduction of potassium ferricyanide by the enzyme was specific for NADH. Using potassium ferricyanide or trypsin-solubilized liver cytochrome b5 (Tb5) as substrates, enzyme activity was inhibited by ADP and to a lesser extent by ATP. Tb5- (but not ferricyanide-) reductase was activated by ionic strength up to 0.05 ion equivalent per liter and inhibited at higher strengths whatever the ion used (Cl-, Na+, Ca2+, Mg2+). Enzyme solubilization occurred with Triton X100. The solubilization increased the Tb5- (but not the ferricyanide-) reductase activity up to a Triton:protein ratio of 15. We therefore suggest that gastric microsomes contain a Triton soluble membrane-bound NADH cytochrome b5 reductase which is in many respects similar to the liver and red cell enzymes.  相似文献   

13.
A heterogeneous biocatalyst based on inulinase immobilized on a nonionic sorbent of Stirosorb series was proposed. Thermal and acid inactivation of free and immobilized inulinase was examined and the corresponding inactivation constants were calculated. An increase in the thermal stability of the immobilized enzyme in comparison to the free one was found. The possibility of using the immobilized enzyme in the hydrolysis of inulin for ten cycles was determined.  相似文献   

14.
Some reactions of organic synthesis require to be performed in rather aggressive media, like organic solvents, that frequently impair enzyme operational stability to a considerable extent. We have studied the option of developing a reactivation strategy to increase biocatalyst lifespan under such conditions, under the hypothesis that organic solvent enzyme inactivation is a reversible process. Glyoxyl agarose immobilized penicillin G acylase and cross‐linked enzyme aggregates of the enzyme were considered as biocatalysts performing in dioxane medium. Reactivation strategy consisted in re‐incubation in aqueous medium of the partly inactivated biocatalysts in organic medium, best conditions of reactivation being studied with respect to dioxane concentration and level of enzyme inactivation attained prior to reactivation. Best results were obtained with glyoxyl agarose immobilized penicillin G acylase at all levels of residual activity studied, with reactivations up to 50%; for the case of a biocatalyst inactivated down to 75% of its initial activity, full recovery of enzyme activity was obtained after reactivation. The potential of this strategy was evaluated in the thermodynamically controlled synthesis of deacetoxycephalosporin G in a sequential batch reactor operation, where a 20% increase in the cumulative productivity was obtained by including an intermediate stage of reactivation after 50% inactivation. Biotechnol. Bioeng. 2009;103: 472–479. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Horseradish peroxidase (HRP) immobilized by coupling the amino acid side chain amino groups or carbohydrate spikes to the matrix has been studied for its resistance to heat, urea-induced inactivation and ability to regain activity after denaturation in order to understand the influence of the nature of immobilization procedure on these processes. The various immobilized preparations were obtained and their properties studied: Sp-HRP was obtained by direct coupling of HRP to cyanogen bromide-activated Sepharose, Sp-NHHRP by coupling periodate oxidized and diamine-treated enzyme to the cyanogen bromide activated Sepharose, SpNH-COHRP by coupling periodate-treated enzyme to amino-Sepharose and SpCon A-HRP by binding of the enzyme on Con A-Sepharose. All the immobilized preparations exhibited higher stability against heat-induced inactivation as compared to the native HRP. Sp-NHHRP was most stable followed by Sp-HRP, SpNH-COHRP and SpCon A-HRP. Sp-NHHRP was also superior in its ability to regain enzyme activity after thermal denaturation, although Sp-HRP regained maximum activity after urea denaturation. Inclusion of Ca2+ was essential for the reactivation of all preparations subsequent to denaturation by urea.  相似文献   

16.
The initial activity of wheat leaf nitrate reductase was depressed on inclusion of the following thiol compounds; dithiothreitol, dithioerythreitol or mercaptoethanol, but not cysteine and glutathione. This thiol effect simply resulted from an interference with the chemical determination of nitrite. Preincubation of the enzyme with NAD+ and these thiols enhanced the inhibition of nitrate reductase activity. This effect was mediated by NADH production by the thiol reduction of NAD+. The inactivation by NAD+ in the presence of thiol compounds which was enhanced by cyanide ions could be reversed by ferricyanide, as has been observed previously for NADH-mediated inactivation of nitrate reductase.  相似文献   

17.
Different immobilized preparations of lipase from Thermomyces lanuginosus (TLL) have been inactivated by exposure to high temperatures, guanidine or 95% of dioxane. The studied preparations were: non-stabilized cyanogen bromide (CNBr-TLL), aminated CNBr-TLL (CNBr-TLL-A), and two stabilized preparations of aminated TLL by immobilization on glyoxyl support, Gx(9/10)-TLL-A (TLL-A immobilized at pH 9 and later incubated at pH 10) or Gx(10)-TLL-A (directly immobilized at pH 10). The reactivation of the partially inactivated immobilized enzymes under mild conditions by incubation in aqueous buffer, allowed recovery of some of the original activity, which was improved when it was pre-incubated in guanidine. Amination produced a fairly negative effect on the reactivation of the enzyme, but the multipoint covalent attachment of this aminated enzyme reversed the effect (e.g., recovered activity increased from 20% for CNBr-TLL to 80% for Gx(9/10)-TLL-A). The negative effect of the amination was clearer when the inactivation was caused by exposure to high temperatures, although the multipoint attachment of aminated enzyme was able to improve the recovered activity. The determination of enzyme activity in the presence of hexadecyltrimethylammonium bromide slowed the inactivation rates of all preparations and improved the recovery of activity after incubation under mild conditions, suggesting that the opening mechanism of the lipase could be a critical step in the TLL inactivation/reactivation. The use of multipoint attached TLL preparations did not only improve enzyme stability, but it also increased activity recovery when the preparation was incubated under mild conditions.  相似文献   

18.
1. Lung NADH-cytochrome b5 reductase was saturated with its artificial substrate, potassium ferricyanide at approximately 0.1 mM ferricyanide concentration, and the activity of the lung enzyme was inhibited by the higher concentrations of potassium ferricyanide. Ferricyanide at 0.5 and 1.0 mM inhibited the activity of the enzyme by about 20 and 61% respectively. The apparent Km value was calculated as 13.7 microM potassium ferricyanide and 4.3 microM NADH. 2. The Michaelis constants for cytochrome b5 and NADH were determined to be 1.67 and 7.7 microM from the Lineweaver-Burk plots. These results demonstrate that affinity of the lung reductase for its natural substrate is almost 10 times higher than that for potassium ferricyanide. 3. Addition of non-ionic detergent stimulated the rate of reductase-catalyzed reduction of lung cytochrome b5 up to 8.2-fold. 4. Kinetic studies performed with lung reductase by varying NADH and cytochrome b5 concentrations at different fixed concentrations at cytochrome b5 or NADH showed a series of parallel lines indicating a "ping-pong" type of kinetic mechanism for interaction of NADH and cytochrome b5 with lung cytochrome b5 reductase.  相似文献   

19.
Thermophilic catechol 2,3-dioxygenase (EC 1.13.11.2) from Bacillus stearothermophilus has been immobilized on highly activated glyoxyl agarose beads. The enzyme could be fully immobilized at 4 degrees C and pH 10.05 with a high retention of activity (around 80%). Enzyme immobilized under these conditions showed little increase in thermostability compared with the soluble enzyme, but further incubation of immobilized enzyme at 25 degrees C and pH 10.05 for 3 h before borohydride reduction resulted in conjugates exhibiting a 100-fold increase in stability (c.f. the free enzyme). The stability of catechol 2,3-dioxygenase immobilized under these conditions was essentially independent of protein concentration whereas free enzyme was rapidly inactivated at low protein concentrations. An apparent stabilization factor of over 700-fold was recorded in the comparison of free and immobilized catechol 2,3-dioxygenases at protein concentrations of 10 μg/ml. Immobilization increased the 'optimum temperature' for activity by 20 degrees C, retained activity at substrate concentrations where the soluble enzyme was fully inactivated and enhanced the resistance to inactivation during catalysis. These results suggest that the immobilization of the enzyme under controlled conditions with the generation of multiple covalent links between the enzyme and matrix both stabilized the quaternary structure of the protein and increased the rigidity of the subunit structures.  相似文献   

20.
Summary Rifamycin oxidase, an enzyme used in the biotransformation of rifamycin B to S was immobilized on nylon fibers using glutaraldehyde as the cross linking agent. An activity of 18 U/g of nylon fiber with a binding efficiency of 37% was achieved. The immobilized enzyme showed an operational stability of 7 days and was also protected against thermal inactivation. It exhibited a Km(app.) of 2.0mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号