首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is widely accepted that muscle cells take either force-generating or relaxing state in an all-or-none fashion through the so-called excitation–contraction coupling. On the other hand, the membrane-less contractile apparatus takes the third state, i.e., the auto-oscillation (SPOC) state, at the activation level that is intermediate between full activation and relaxation. Here, to explain the dynamics of all three states of muscle, we construct a novel theoretical model based on the balance of forces not only parallel but also perpendicular to the long axis of myofibrils, taking into account the experimental fact that the spacing of myofilament lattice changes with sarcomere length and upon contraction. This theory presents a phase diagram composed of several states of the contractile apparatus and explains the dynamic behavior of SPOC, e.g., periodical changes in sarcomere length with the saw-tooth waveform. The appropriate selection of the constant of the molecular friction due to the cross-bridge formation can explain the difference in the SPOC periods observed under various activating conditions and in different muscle types, i.e., skeletal and cardiac. The theory also predicts the existence of a weak oscillation state at the boundary between SPOC and relaxation regions in the phase diagram. Thus, the present theory comprehensively explains the characteristics of auto-oscillation and contraction in the contractile system of striated muscle.  相似文献   

3.
Most current textbooks of cell biology and histology use the steric blocking model to describe the protein mechanism by which vertebrate striated muscle contraction is regulated. Evidence accumulated in the past decade, however, reveals the regulation of muscle contraction to be far more complex than this model predicts.  相似文献   

4.
5.
The regulatory proteins of Ascaris suum striated skeletal muscle were partially purified and characterized. A tropomyosin isoform (Mr 41K) and three troponin subunits identified as troponin T (Mr 37.5K), troponin I (Mr 25.5K) and troponin C (Mr 18.5K) were purified. Three myosin light chains (Mr 25K, 19K, and 17K) were isolated from washed Ascaris actomyosin; the 19K subunit was phosphorylated in vitro. A calcium/calmodulin-dependent myosin light chain kinase activity was identified in the muscle. In contrast to previously reported data suggesting that Ascaris obliquely striated muscle contraction is regulated by a myosin-mediated mechanism, these data indicate that all of the proteins required for actin-mediated, calcium-dependent muscle contraction are present in this tissue.  相似文献   

6.
7.
8.
Toward a theory of muscle contraction   总被引:1,自引:0,他引:1  
  相似文献   

9.
Contraction of individual sarcomeres within the living mite Tarsonemus sp. was observed by polarized light microscopy. In unflattened animals the usual range of contraction was such that the minimum sarcomere length approximated the length of the A region, and the maximum sarcomere length was about twice the length of the A region. The central sarcomeres of the dorsal metapodosomal muscles were observed in detail. The A band length increased slightly with increasing sarcomere length since the regression of I region length on sarcomere length had an average slope of 0.91. When the A band length in a sarcomere which was shortening was compared with the length when the same sarcomere lengthened, no significant difference was seen. The A band of each sarcomere seemed to act as a not too rigid limit to further shortening; this agreed with the reversible shortening of a muscle in which the A band had been experimentally shortened. An H region was visible at long sarcomere lengths and was not visible at short sarcomere lengths, even when the muscle was actively shortening. The rate of change of H region length with sarcomere length suggested that I filament length may increase as sarcomere length increases. Despite this effect and the small increase in A length with sarcomere length, the results are considered to be consistent with a model in which shortening occurs by the relative movement of A and I filaments, with little or no change in length of either set of filaments. Sarcomere shortening was clearly associated with an increase in the retardation of the A region.  相似文献   

10.
11.
This work represents an attempt to find a more complete and adequate interpretation of the phenomenon of muscle contraction than is presently available. Arguments are presented in favour of the idea that the principal groups of existing theories on contraction contain both elements that should be excluded from consideration and elements that are of particular interest to retain. In the present theory, it is accepted that the essential process in muscle contraction is a relative increase in long-range repulsive forces, exerted directly perpendicular to the myofilaments. It is then assumed that these forces of repulsion are converted into forces which shorten the fibre, by way of a passive mechanical action of obliquely arranged cross bridges between the thick and thin filaments. Analysis of important experimental data serves to emphasize the explicative potential of the new theory.  相似文献   

12.
13.
A simple kinetic model of muscle contraction is suggested. The rates of cross-bridge transitions from one kinetic state to another one are supposed to depend on the strain averaged over an ensemble of actin-bound bridges. With a proper set of strain-dependent rate constants, the model fits well a broad range of experimental data. Owing to that the strain-stress relation is described by a set of ordinary differential equations, the model can be used for simulating complex 3D muscle contractions.  相似文献   

14.
15.
16.
17.
18.
改变实验条件,肌纤维可发生从收缩到自发振动的相变。为了研究这一现象,引进了描述肌纤维内部弹性成分拉伸长度与张力关系的表达式,利用肌肉态方程并考虑肌纤维的特殊结构,给出了描述肌纤维收缩及自发振动的统一动力学方程。从动力学方程出发,肌纤维自发振动的发生条件得到了自然解释,所给出的振动周期和振动曲线同实验结果相符,并给出了一些新的理论结果。这一工作的意义在于,完成了从肌球蛋白单分子性质、肌纤维组织结构到肌纤维功能的信息整合。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号