首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
H Lee  Y H Fu  G A Marzluf 《Biochemistry》1990,29(37):8779-8787
The nitrogen regulatory circuit of Neurospora crassa contains structural genes that encode nitrogen catabolic enzymes which are subject to complex genetic and metabolic regulation. This set of genes is controlled by nitrogen limitation, by specific induction, and by the action of nit-2, a major positive-acting regulatory gene, and nmr, a negative-acting control gene. The complete nucleotide sequence of alc, the gene that encodes allantoicase, a purine catabolic enzyme, is presented. The alc gene contains a single intron, is transcribed from two initiation sites situated approximately 50 nb upstream of the translation start site, and encodes a protein comprised of 354 amino acids. Mobility shift and DNA footprint experiments identified a single binding site for the NIT2 regulatory protein in the alc promoter region. The binding site contains a 10 nucleotide base pair symmetrical sequence which is flanked by two possible core binding sequences, TATCT and TATCG. Mutant NIT2/beta-gal fusion proteins with amino acid substitutions in a putative zinc-finger motif were shown to be completely deficient in the ability to bind to the alc promoter DNA fragment.  相似文献   

3.
4.
The expression of the structural genes nit-3 and nit-6, which encode the nitrate assimilatory enzymes nitrate reductase and nitrite reductase, respectively, is highly regulated by the global-acting NIT2 regulatory protein. These structural genes are also controlled by nitrogen catabolite repression and by specific induction via nitrate. A pathway-specific regulatory protein, NIT4, appears to mediate nitrate induction of nit-3 and of nit-6. The NIT4 protein, composed of 1090 amino acids, contains a putative GAL4-like Cys-6 zinc cluster DNA-binding motif, which is joined by a short segment to a stretch of amino acids that appear to constitute a coiled-coil dimerization domain. Chemical crosslinking studies demonstrated that a truncated form of NIT4 forms homodimers. Mobility-shift and DNA-footprinting experiments have identified two NIT4-binding sites of significantly different strengths in the promoter region of the nit-3 gene. The stronger binding site contains a symmetrical octameric sequence, TCCGCGGA, whereas the weaker site has a related sequence. Sequences related to this palindromic element can be found upstream of the nit-6 gene.  相似文献   

5.
6.
The major nitrogen-regulatory gene nit-2 of Neurospora crassa activates the expression of numerous unlinked structural genes which specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein of 1036 amino acid residues with a single 'zinc finger' and a downstream basic region, which together may constitute a DNA-binding domain. The zinc finger domain of the NIT2 protein was synthesized in vitro and also expressed as a fusion protein in Escherichia coli to examine its DNA-binding activity. The wild-type NIT2 finger domain protein binds to the promoter region of nit-3, the nitrate reductase structural gene. A series of NIT2 mutant proteins obtained by site-directed mutagenesis was expressed and tested for functional activity. The results demonstrate that both the single zinc-finger motif and the downstream basic region of NIT2 are critical for its trans-activating function in vivo and specific DNA-binding in vitro.  相似文献   

7.
8.
In Neurospora crassa, the expression of unlinked structural genes which encode nitrogen catabolic enzymes is subject to genetic and metabolic regulation. The negative-acting nmr regulatory gene appears to play a role in nitrogen catabolite repression. Using the N. crassa nmr gene as a probe, homologous sequences were identified in a variety of other filamentous fungi. The polymerase chain reaction was used to isolate the nmr-like gene from the exotic Mauriceville strain of N. crassa and from the two related species, N. intermedia and N. sitophila. Sequence comparisons were carried out with a 1.7-kb DNA segment which includes the entire coding region of nmr plus 5' and 3' noncoding sequences. The size of the nmr coding region was identical in all three Neurospora species. Approximately 30 nucleotide base substitutions were found in the coding region of the nmr gene of each of the sister species when compared to the standard N. crassa sequence. However, most of the base changes occurred in third codon positions and were silent. The NMR proteins of N. sitophila and of N. intermedia display only three and four amino acid substitutions, respectively, from the N. crassa protein. Two regions of high variability, which include deletions and insertions of bases, were found in the 5' and 3' noncoding regions of the gene.  相似文献   

9.
The nit-3 gene of the filamentous fungus Neurospora crassa encodes nitrate reductase, the enzyme which catalyzes the first step in nitrate assimilation. The nit-3 gene is subject to a high degree of regulation by metabolic inducers and repressors, and its expression requires two distinct trans-acting regulatory proteins. Hypersensitive sites in the 5' DNA sequence upstream of the nit-3 gene were mapped with the use of three different nucleases as molecular probes. Six hypersensitive sites, three of which are very strong, were detected at essentially identical positions by all three nucleases. The hypersensitive sites appear to develop in a constitutive fashion and are present under conditions in which the nit-3 structural gene is expressed but also when this gene is inactive, although these sites are considerably less prominent in cells subjected to nitrogen catabolite repression. The presence of the hypersensitive sites appears to depend upon both the positively acting NIT2 and the positively acting NIT4 regulatory proteins, which might play a role in positioning of chromatin protein.  相似文献   

10.
Nitrogen regulation of acid phosphatase in Neurospora crassa.   总被引:5,自引:4,他引:1       下载免费PDF全文
Neurospora crassa possesses a repressible acid phosphatase with phosphodiesterase activity which appears to permit it to utilize ribonucleic acid as a phosphorus and as a nitrogen source. This acid phosphatase, which is specified by the pho-3 locus, is derepressed approximately eightfold during nitrogen limitation and to an even greater extent during phosphorus limitation, but is unaffected by sulfur limitation. Derepression of the enzyme did not occur when adenosine 5'-monophosphate was the sole phosphorus or nitrogen source. Synthesis of the acid phosphatase is not under the control of the nit-2 locus, which regulates the expression of a large number of other nitrogen catabolic enzymes. The structural gene of the acid phosphatase appears to be a member of both the phosphorus and nitrogen regulatory circuits.  相似文献   

11.
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5′ or 3′ sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.  相似文献   

12.
In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-CX17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.  相似文献   

13.
14.
15.
We have determined the complete nucleotide sequences of three functionally related nitrogen assimilation regulatory genes from Klebsiella pneumoniae and Rhizobium meliloti. These genes are: 1) The K. pneumoniae general nitrogen assimilation regulatory gene ntrC (formerly called glnG), 2) the K. pneumoniae nif-specific regulatory gene nifA, and 3) an R. meliloti nif-specific regulatory gene that appears to be functionally analogous to the K. pneumoniae nifA gene. In addition to the DNA sequence data, gel-purified K. pneumoniae nifA protein was used to determine the amino acid composition of the nifA protein. The K. pneumoniae ntrC and nifA genes code for proteins of 52,259 and 53,319 d respectively. The R. meliloti nifA gene codes for a 59,968 d protein. A central region within each polypeptide, consisting of approximately 200 amino acids, is between 52% and 58% conserved among the three proteins. Neither the amino termini nor the carboxy termini show any conserved sequences. Together with data that shows that the three regulatory proteins activate promoters that share a common consensus sequence in the -10 (5'-TTGCA-3') and -23 (5'-CTGG-3') regions, the sequence data presented here suggest a common evolutionary origin for the three regulatory genes.  相似文献   

16.
The sulfur-regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which encode sulfur-catabolic enzymes and two major regulatory genes which govern their expression. The positive-acting cys-3 regulatory gene is required to turn on the expression of the sulfur-related enzymes, whereas the other regulatory gene, scon, acts in a negative fashion to repress the synthesis of the same set of enzymes. Expression of the cys-3 regulatory gene was found to be controlled by scon and by sulfur availability. The nucleotide sequence of the cys-3 gene was determined and can be translated to yield a protein of molecular weight 25,892 which displays significant homology with the oncogene protein Fos, yeast GCN4 protein, and sea urchin histone H1. Moreover, the putative cys-3 protein has a well-defined leucine zipper element plus an adjacent charged region which together may make up a DNA-binding site. A cys-3 mutant and a cys-3 temperature-sensitive mutant lead to substitutions of glutamine for basic amino acids within the charged region and thus may alter DNA-binding properties of the cys-3 protein.  相似文献   

17.
In the filamentous fungus Neurospora crassa, both the global-acting regulatory protein NIT2 and the pathway-specific regulatory protein NIT4 are required to turn on the expression of the nit-3 gene, which encodes nitrate reductase, the first enzyme in the nitrate assimilatory pathway. Three NIT2 binding sites and two NIT4 binding sites have been identified in the 1.3-kb nit-3 promoter region via mobility shift and footprinting experiments with NIT2-beta-galactosidase and NIT4-beta-Gactosidase fusion proteins. Quantitative mobility shift assays were used to examine the affinity of individual NIT2 binding sites for the native NIT2 protein present in N. crassa nuclear extracts. In vivo analysis of nit-3 promoter 5' deletion constructs and individual NIT2 and NIT4 binding-site deletions or mutations revealed that all of the NIT2 and NIT4 binding sites are required for the full level of expression of the nit-3 gene. A cluster of two NIT2 and two NIT4 binding sites located more than 1 kb upstream of the translational start site is required for nit-3 expression, and one NIT2 binding site and one NIT4 site, which are immediately adjacent to each other, are of particular functional importance. A significant NIT2-NIT4 protein-protein interaction might occur upon their binding to nearby sites.  相似文献   

18.
19.
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5 or 3 sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.  相似文献   

20.
The Neurospora crassa genome database was searched for sequence similarity to crnA, a nitrate transporter in Aspergillus nidulans. A 3.9-kb fragment (contig 3.416, subsequence 183190-187090) was cloned by PCR. The gene coding for this nitrate transporter was termed nit-10. The nit-10 gene specifies a predicted polypeptide containing 541 amino acids with a molecular mass of 57 kDa. In contrast to crnA, which is clustered together with niaD, encoding nitrate reductase, and niiA, encoding nitrite reductase, nit-10 is not linked to nit-3 (nitrate reductase), nit-6 (nitrite reductase), or to nit-2, nit-4 (both are positive regulators of nit-3), or nmr (negative regulator of nit-3) in Neurospora crassa. A nit-10 rip mutant failed to grow in the medium when nitrate (< 10 mM) was used as the sole nitrogen source, but grew similarly to wild type when nitrate concentration was 10 mM or higher. In addition, it showed strong sensitivity to cesium in the presence of nitrate and resistance to chlorate in the presence of alanine, proline, or hypoxanthine. The expression of nit-10 required nitrate induction and was subject to repression by nitrogen metabolites such as glutamine. Expression of nit-10 also required functional products of nit-2 and nit-4. The half-life of nit-10 mRNA was determined to be approximately 2.5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号