首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of phage phi 29 occurs by a single pathway, and DNA-protein (DNA-gp3) has been shown to be an intermediate on the assembly pathway by a highly efficient in vitro complementation. At 30 degrees C, about one-half of the viral DNA synthesized was assembled into mature phage, and the absolute plating efficiency of phi 29 approached unity. DNA packaging at 45 degrees C was comparable to that at 30 degrees C, but the burst size was reduced by one-third. When cells infected with mutant ts3(132) at 30 degrees C to permit DNA synthesis were shifted to 45 degrees C before phage assembly, DNA synthesis ceased and no phage were produced. However, a variable amount of DNA packaging occurred. Superinfection by wild-type phage reinitiated ts3(132) DNA synthesis at 45 degrees C, and if native gp3 was covalently linked to this DNA during superinfection replication, it was effectively packaged and assembled. Treatment of the DNA-gp3 complex with trypsin prevented in vitro maturation of phi 29, although substantial DNA packaging occurred. A functional gp3 linked to the 5' termini of phi 29 DNA is a requirement for effective phage assembly in vivo and in vitro.  相似文献   

2.
Summary Derivatives of bacteriophages fd which transduce kanamycin resistance were selected after growth of the phage in an E. coli strain that carried transposon 5 (Tn5). Different clones of transducing phage and their DNAs were characterized by gel electrophoresis, electron microscopy, and by their ability to multiply in the absence of helper phage. Integration of the intact transposon into the full size phage genome was correlated with an increase in size of the phage particle from 0.95 to 1.7 , and with the appearance in the phage DNA of the stem loop structure characteristic for single-stranded Tn5 DNA. In nondefective phages the site of insertion was mapped by heteroduplex analysis within the intergenic region of the phage genome. Defective transducing phages were characterized as an insertion of Tn5 into a phage gene, and/or as a partial deletion or duplication of phage and transposon DNA. The size of the transducting phage from different defective clones varied from 0.6 to 3.0 and was directly proportional to the DNA content. These results demonstrate that filamentous bacteriophage are highly capable to replicate and package very different amounts of foreign DNA.This work was presented at the EMBO Workshop on single-stranded DNA viruses, October 1976, Harpert, The Netherlands  相似文献   

3.
The regulation of the in vitro synthesis of the N-terminal portion of the β-galactosidase molecule (α-peptide) has been investigated using DNA fragments of the lactose operon as template. DNA fragments of about 789 base pairs were isolated after endonuclease (Hin II) digestion of either λplac5, λh80dlacps or λh80dlacUV5 phage DNA or DNA from the recombinant plasmid PMC3. The regulation of the expression of these fragments is similar to that observed for the synthesis of β-galactosidase using total phage or plasmid DNA as template, indicating that the regulatory regions on the fragments are intact and functional. Thus, the synthesis of the α-peptide required an inducer due to the presence of lac repressor in the E. coli S-30 extract used. In addition a dependency on adenosine 3′,5′-cyclic monophosphate (cAMP)1 for α-peptide synthesis was obtained with the fragments isolated from λplac5 and λh80dlacps DNAs, whereas little effect of cAMP was seen with the fragment isolated from λh80dlacUV5 phage DNA or PMC3 plasmid DNA containing a UV5 promotor region. However, a significant difference in the effect of guanosine-3′-diphosphate-5′-diphosphate (ppGpp) was observed. With the total phage DNA as template, ppGpp resulted in a 2–4 fold stimulation whereas with the fragment, or PMC3 plasmid DNA, directed synthesis of the α-peptide no significant stimulation by ppGpp was seen.  相似文献   

4.
E R Zabarovsky  R L Allikmets 《Gene》1986,42(1):119-123
For the preparation of gene libraries, DNA from lambda EMBL3 phage was digested with SalI and EcoRI, and the cohesive ends partially filled-in by addition of dTTP, dCTP and Klenow fragment of DNA polymerase I (PolIk). Genomic DNA was cleaved partially with Sau3A and subsequently incubated with dATP, dGTP and PolIk. The phage and genomic DNAs were then mixed and ligated. The recombinant DNAs were packaged in vitro. The efficiency of packaging was 10(5)-10(6) of infectious phage lambda particles per microgram of the genomic DNA (as compared to approx. 10(7) per microgram for the wild-type lambda DNA). This procedure is very rapid and requires only microgram quantities of genomic DNA for preparing an entire gene library. The other important advantage is that multiple independent insertions of genomic DNA cannot occur in a single recombinant phage and self-ligation of phage DNA is blocked. It is also applicable for other SalI-containing vectors.  相似文献   

5.
The change of infectivity of phage DNAs after heat and alkali denaturation (and renaturation) was measured. T7 phage DNA infectivity increased 4- to 20-fold after denaturation and decreased to the native level after renaturation. Both the heavy and the light single strand of T7 phage DNA were about five times as infective as native T7 DNA. T4 and P22 phage DNA infectivity increased 4- to 20-fold after denaturation and increased another 10- to 20-fold after renaturation. These data, combined with other authors' results on the relative infectivity of various forms of phiX174 and lambda DNAs give the following consistent pattern of relative infectivity. Covalently closed circular double-stranded DNA, nicked circular double-stranded DNA, and double-stranded DNA with cohesive ends are all equally infective and also most highly infectious for Escherichia coli lysozyme-EDTA spheroplasts; linear or circular single-stranded DNAs are about 1/5 to 1/20 as infective; double-stranded DNAs are only 1/100 as infective. Two exceptions to this pattern were noted: lambda phage DNA lost more than 99% of its infectivity after alkaline denaturation; this infectivity could be fully recovered after renaturation. This behavior can be explained by the special role of the cohesive ends of the phage DNA. T5 phage DNA sometimes showed a transient increase in infectivity at temperatures below the completion of the hyperchròmic shift; at higher temperatures, the infectivity was completely destroyed. T5 DNA denatured in alkali lost more than 99.9% of its infectivity; upon renaturation, infectivity was sometimes recovered. This behavior is interpreted in terms of the model of T5 phage DNA structure proposed by Bujard (1969). The results of the denaturation and renaturation experiments show higher efficiencies of transfection for the following phage DNAs (free of single-strand breaks): T4 renatured DNA at 10(-3) instead of 10(-5) for native DNA; renatured P22 DNA at 3 x 10(-7) instead of 3 x 10(-9) for native DNA; and denatured T7 DNA at 3 x 10(-6) instead of 3 x 10(-7) for native DNA.  相似文献   

6.
Electronmicroscopic observations indicate that bacteriophage CVX-5 has an angular head with long spiral tail which is noncontractile, possibly having 2--3 tail fibres attached at the distal part of the tail. This phage is antigenically unrelated to any of the T-phages. Inhibition of phage CVX-5 multiplication by mitomycin C and incorporation of 3H-thymidine into this phage indicate that phage CVX-5 is a DNA phage.  相似文献   

7.
Transfection of Escherichia coli spheroplasts by native T5 phage DNA was not affected by treatment with polynucleotide ligase. Denatured T5 phage DNA infectivity, only 0.1% of the native DNA level, was increased slightly by polynucleotide ligase treatment. Renatured T5 phage DNA infectivity was also increased slightly by polynucleotide ligase treatment. To form an infective center with rec(+) spheroplasts, 1.6 to 2.1 native T5 phage DNA molecules were required; however, 1.4 T5 phage DNA molecules were required to form an infective center with recA(-)B(-) spheroplasts, and one molecule was sometimes sufficient for rec B(-) spheroplasts. Polynucleotide ligase treatment of T5 phage DNA had no effect on these parameters. Thus, the single-strand interruptions of T5 phage DNA are probably not essential to the survival of the parental T5 phage DNA, and T5 phage DNA, especially the denatured form, is highly sensitive to some nucleases in E. coli spheroplasts.  相似文献   

8.
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.  相似文献   

9.
Bacteriophage P22 DNA packaging events occur in processive series on concatemeric phage DNA molecules. At the point where such series initiate, the DNA is recognized at a site called pac, and most molecular left ends are generated within six short regions called end sites, which are present in a 120 base-pair region surrounding the pac site. The bacteriophage P22 genes 2 and 3 proteins are required for successful generation of these ends and DNA packaging during progeny virion assembly. Mutants lacking the 162-amino-acid gene 3 protein replicate DNA and assemble functional procapsids. In this report we describe the nucleotide changes and DNA packaging phenotypes of a number of missense mutations of gene 3, which give the phage a higher than normal frequency of generalized transduction. In cells infected by these mutants, more packaging events initiate on the host chromosome than in wild-type infections, so the mutations are thought to affect the specificity of packaging initiation. In addition to having this phenotype, these mutations affect the process of phage DNA packaging in detectable ways. They may: (1) alter the target site specificity for packaging; (2) make target site recognition more promiscuous; (3) affect end site utilization; (4) alter the pac site; and (5) cause apparent random DNA packaging series initiation on phage DNA.  相似文献   

10.
Lysogenic conversion has been suggested as a mechanism of control of group A streptococcal pyrogenic exotoxin type A production. Digestion of DNA from two converting bacteriophages, 3GL16 and T12, with a variety of restriction endonucleases yielded identical DNA fragments upon electrophoresis in agarose gels. Several known A toxin-positive strains that did not appear to produce converting phage upon induction were analyzed for toxin and phage DNA. Strains, including NY5, 594, and C203S, were shown by hybridization studies to carry the A toxin gene (speA) adjacent to chromosomally inserted phage fragments, homologous to phage T12 DNA, which may represent defective converting phages. The phage T12 att site mapped adjacent to speA. These data suggest that phage T12 acquired the A toxin gene from the bacterial genome. All streptococcal strains tested that were A toxin negative by Ouchterlony immunodiffusion failed to show any hybridization to speA-specific probes.  相似文献   

11.
The SOS hypothesis postulated that the mutator effect on undameged DNA that generates phage-untargeted mutagenesis (UTM) results directly from the mechanism of targeted mutagenesis. RecA protein, which stimulates the cleavage of both the LexA repressor and UmuD protein, and the UmuDC gene products are required for UV-induced targeted mutagenesis. The use of phage λ for analyzing UV-induced mutagenesis has permitted a distinction to be made between the mechanisms of targeted and untargeted mutagenesis, in that the two processes differ with respect to their genetic requirements for recA+ and umuDC+ genes. In this paper, we show thet (i) proficiency for excision repair is required for UTM in double-stranded DNA phage but not in single-stranded DNA phage; (ii) the umuC function, which is not required for UTM of the double-stranded DNA phage λ, is necessary for untargeted mutagenesis of the single-stranded DNA phages M13 and φX174; (iii) for both single-stranded and double-stranded DNA phage, UV irradiation of the host increases the level of recA730-induced UTM. Our results are also consistent with the interpretation that the expression of untargeted mutagenesis in phage λ and in M13 depends on the polymerase and to a lesser extent on the exonuclease 5′ → 3′, activities of Po1I. These results suggest that the involvement of the RecA and UmuDC proteins may be related to more than the presence of base damage in the DNA substrate.  相似文献   

12.
The classical T-even bacteriophages recognize host cells with their long tail fibers. Gene products 35, 36, and 37 constitute the distal moiety of these fibers. The free ends of the tail fibers, which are formed by the CO2H terminus of gene product 37, possess the host range determinants. It was found that 4 out of 10 different strains of Escherichia coli K-12 contained regions of chromosomal DNA which hybridized with a probe consisting of genes 35, 36, and 37 of the T-even phage K3. From one strain this homologous DNA, which was associated with an EcoRI fragment of about 5 kilobases, was cloned into plasmid pUC8. Two independently recovered hybrid plasmids had undergone a peculiar rearrangement which resulted in the loss of about 3 kilobases of cloned DNA and a duplication of both the vector and the remaining chromosomal DNA. The mechanisms causing this duplication-deletion may be related to that of transposases. The cloned DNA was capable of recombination with phage T4 gene 36 and a phage T2 gene 37 amber mutant. DNA sequencing revealed the existence of regions of identity between the cloned DNA and genes 36 and 37 of phage T2. In addition, after growth of a derivative of phage K3 on a strain harboring T2 DNA, it was found that this phage contained the same parts of the T2 tail fiber genes which had been recovered from the bacterial chromosome. There appears to be little doubt that the phage had picked up this DNA from the host. The possibility is considered that a repertoire of parts of genes 36 and 37 of various T-even-type phages is present in their hosts, allowing the former to change their host ranges.  相似文献   

13.
The treatment of denatured T4 phage DNA with antiserum for the DNA of this phage, containing antibodies against glucosylated 5-hydroxymethylcytosine, decreases the ability of DNA for renaturation. The greatest inhibiting activity is possessed by antiserum for T4 phage DNA irradiated with UV light, which contains antibodies not only against glucosylated 5-hydroxymethylcytosine, but also against the usual nitrogen bases. Antiserum against E. coli DNA, containing antibodies to the usual nitrogen bases, in equal dilutions with the antisera indicated above, shows less inhibitory activity on the renaturation of T4 phage DNA.  相似文献   

14.
A filamentous phage, 'lvpf5,' of Vibrio parahaemolyticus O3:K6 strain LVP5 was isolated and characterized. The host range was not restricted to serotype O3:K6, but 7 of 99 V. parahaemolyticus strains with a variety of serotypes were susceptible to the phage. The phage was inactivated by heating at 80 C for 10 min and by treating with chloroform. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phage exhibited a 3.8 kDa protein. The amino-terminal amino acid sequence of the coat protein was determined as AEGGAADPFEAIDLLGVATL. The phage genome consisted of a single-stranded DNA molecule. The activity of the phages was inhibited by anti-Na2 pili antibody.  相似文献   

15.
Gene 5 of bacteriophage T7 encodes a DNA polymerase essential for phage replication. A single point mutation in gene 5 confers temperature sensitivity for phage growth. The mutation results in an alanine to valine substitution at residue 73 in the exonuclease domain. Upon infection of Escherichia coli by the temperature-sensitive phage at 42 degrees C, there is no detectable T7 DNA synthesis in vivo. DNA polymerase activity in these phage-infected cell extracts is undetectable at assay temperatures of 30 degrees C or 42 degrees C. Upon infection at 30 degrees C, both DNA synthesis in vivo and DNA polymerase activity in cell extracts assayed at 30 degrees C or 42 degrees C approach levels observed using wild-type T7 phage. The amount of soluble gene 5 protein produced at 42 degrees C is comparable to that produced at 30 degrees C, indicating that the temperature-sensitive phenotype is not due to reduced expression, stability, or solubility. Thus the polymerase induced at elevated temperatures by the temperature-sensitive phage is functionally inactive. Consistent with this observation, biochemical properties and heat inactivation profiles of the genetically altered enzyme over-produced at 30 degrees C closely resemble that of wild-type T7 DNA polymerase. It is likely that the polymerase produced at elevated temperatures is a misfolded intermediate in its folding pathway.  相似文献   

16.
A mutant of phage T5 which is unable to induce thymidylate synthetase was isolated. T5 thy mutants synthesized less DNA than did wild-type T5, and the burst size of progeny phage was correspondingly reduced two- to threefold in thy+ Escherichia coli. No DNA or progeny phage were made in E. coli thy hosts grown in the absence of exogenous thymine. When the T5 thy mutation was recombined with a T5 dut mutation (unable to induce dUTPase), replication resulted in progeny which contained significant amounts of uracil in their DNA, and these phage failed to produce plaques unless the plating host was deficient in uracil-DNA glycosylase. T5 phage containing various amounts of uracil in their DNA were prepared and used to determine the effect of uracil on the induction of the early enzyme dTMP kinase. The presence of uracil in the parental DNA increased the rate of induction of this enzyme by about 2.5-fold. The T5 thy gene was mapped and is located near the T5 frd gene on the B region of the T5 genome.  相似文献   

17.
The dam-3 mutation results in a five-fold reduction in the number of 6-methyl-adenine (6-meA) residues in the DNA of E. coli K12 or phage lambda. The DNA of phage fd appears to be devoid of 6-meA when propagated on dam-3 bacteria. The phenotypic differences between dam-3 and dam+ bacteria include: (i) increased free phage in lysogenic dam-3 cultures, (2) increased sensitivity to methyl methanesulfonate (MMS), (3) inviability of dam-3 lex-I strains, (4) lower molecular weight of DNA in dam-3 bacteria in the absence of DNA ligase and (5) increased rate of DNA degradation in dam-3 recA strains.  相似文献   

18.
Complex formation of circular, single-stranded phage fd DNA with Escherichia coli DNA binding protein HD or phage fd gene 5 protein keeps infection of E. coli spheroplasts at the level of free phage DNA, whereas complexes of this DNA with E. coli DNA unwinding protein show a strongly reduced efficiency of transfection. Displacement of the unwinding protein by HD protein or gene 5 protein also maintains the poor adsorption of the complexes to spheroplasts. Free E. coli DNA unwinding protein and residual amounts of this protein bound to the DNA may interfere with the adsorption and the uptake of the phage genome.  相似文献   

19.
Abstract A phage typing system using a group of 11 closely related phage (as judged by Southern analysis and restriction fragment length polymorphism analysis) was able to distinguish at least six phage types in Salmonella heidelberg of human and animal origin. Restriction fragment length polymorphism analysis using cosmid probes from S. heidelberg confirmed that most S. heidelberg isolates belong to a single 'clonal' group. Southern analysis using DNA isolated from each of the testing phage group showed that phage types 4, 5 and 6 carry closely related endogenous or lysogenic phage. Induction of a lysogenic phage Hlp-4 (Heidelberg lysogenic phage) from type 4 could become lysogenic and convert phage types 1 and 3 to phage type 4 and phage type 5 to a non-typable phenotype.  相似文献   

20.
5-Iodouracil (IUra)-substituted progeny bacteriophage T4td8 were grown under conditions such that, upon CsCl equilibrium isopycnic gradient centrifugation, progeny with density distributions about the median similar to that of unsubstituted phage are obtained. In the absence of light a monotonie relationship exists between decreasing progeny viability and increasing percent IUra substitution. IUra is equivalent to thymine as a growth factor on a molar basis, and at concentrations of IUra plus thymine above that required for maximum particle production, the percent IUra substitution in phage DNA is determined by the mole fraction of IUra in the medium. The lethal effects of 5-iodo-2'-deoxyuridine (IdUrd) and IUra are equivalent, and are not produced by a direct effect on the phage particles. At equivalent percent substitution in phage DNA the order of lethality is IUra > 5-bromouracil (BrUra) > 5-chlorouracil (ClUra). There is no interference with the transfer of thymine from host cell to progeny phage by the presence of IUra in the medium, and IUra affects neither the time of lysis nor the content of phage DNA in the infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号