首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In previous site-directed mutagenesis study on thermolysin, mutations which increase the catalytic activity or the thermal stability have been identified. In this study, we attempted to generate highly active and stable thermolysin by combining the mutations so far revealed to be effective. Three mutant enzymes, L144S (Leu144 in the central alpha-helix located at the bottom of the active site cleft is replaced with Ser), G8C/N60C/S65P (Gly8, Asn60, and Ser65 in the N-terminal region are replaced with Cys, Cys, and Pro, respectively, to introduce a disulfide bridge between the positions 8 and 60), and G8C/N60C/S65P/L144S, were constructed by site-directed mutagenesis. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM), the k(cat)/K(m) values of L144S and G8C/N60C/S65P/L144S were 5- to 10-fold higher than that of the wild-type enzyme. The rate constants for thermal inactivation at 70 degrees C and 80 degrees C of G8C/N60C/S65P and G8C/N60C/S65P/L144S decreased to 50% of that of the wild-type enzyme. These results indicate that G8C/N60C/S65P/L144S is more active and stable than the wild-type thermolysin. Thermodynamic analysis suggests that the single mutation of Leu144-->Ser and the triple mutation of Gly8-->Cys, Asn60-->Cys, and Ser65-->Pro are independent.  相似文献   

2.
Thermolysin is remarkably activated and stabilized by neutral salts with varying degrees depending on salt species, and particular surface residues are thought to be especially important in its activity and stability [Inouye, K. (1992) J. Biochem. 112, 335-340; Inouye, K. et al. (1998) Biochim. Biophys. Acta 1388, 209-214]. In this study, we examined the mutational effects of the surface residues of thermolysin. Gln128 and Gln225 were selected as the residues to be mutated because they are located on the surface loop and close to but not in the active site (23.5 and 15.8 A far from the active site zinc ion, respectively) and fully solvent accessible. Nine single mutants [Q128K (Gln128 is replaced with Lys), Q128E, Q128A, Q225K, Q225R, Q225E, Q225D, Q225A and Q225V] were constructed by site-directed mutagenesis. Mutational changes in catalytic activity were found only in the mutant thermolysins having a hydrophobic residue at the position 225 (Q225A and Q225V). In the hydrolysis of a neutral substrate N-[3-(2-furyl)acryloyl]-glycyl-l-leucine amide (FAGLA), the alkaline pK(a) value of Q225A is 8.48 +/- 0.04, being higher by 0.42 +/- 0.07 units than that of the wild-type thermolysin. The k(cat)/K(m) value of the wild-type enzyme is enhanced 14 times with 4 M NaCl, and those of Q225A and Q225V are enhanced 10 and 19 times, respectively. In the hydrolysis of a negatively charged substrate N-carbobenzoxy-l-aspartyl-l-phenylalanine methyl ester (ZDFM), unlike FAGLA, the initial velocities of Q225A and Q225V decreased to 30 and 50% of that of the wild-type enzyme, respectively. Their thermal stability is similar to that of the wild-type enzyme. These findings indicate that even a single mutation at the thermolysin surface induces changes in the electrostatic environment in the active site and affects the activity. Thus, site-directed mutagenesis of surface residues of thermolysin, including apparently thermodynamically unfavorable introduction of hydrophobic residues, should be explored to improve its activity and stability.  相似文献   

3.
In the N-terminal domain of thermolysin, two polypeptide strands, Asn112-Ala113-Phe114-Trp115 and Ser118-Gln119-Met120-Val121-Tyr122, are connected by a short loop, Asn116-Gly117, to form an anti-parallel β-sheet. The Asn112-Trp115 strand is located in the active site, while the Ser118-Tyr122 strand and the Asn116-Gly117 loop are located outside the active site. In this study, we explored the catalytic role of Gly117 by site-directed mutagenesis. Five variants, G117A (Gly117 is replaced by Ala), G117D, G117E, G117K, and G117R, were produced by co-expressing in Escherichia coli the mature and pro domains as independent polypeptides. The production levels were in the order G117E > wild type > G117K, G117R > G117D. G117A was hardly produced. This result is in contrast to our previous one that all 72 active-site thermolysin variants were produced at the similar levels whether they retained activity or not (M. Kusano et al. J. Biochem., 145, 103-113 (2009)). G117E exhibited lower activity in the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and higher activity in the hydrolysis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester than the wild-type thermolysin. G117K and G117R exhibited considerably reduced activities. This suggests that Gly117 plays an important role in the activity and stability of thermolysin, presumably by affecting the geometries of the Asn112-Trp115 and Ser118-Tyr122 strands.  相似文献   

4.
Asn112 is located at the active site of thermolysin, 5-8 A from the catalytic Zn2+ and catalytic residues Glu143 and His231. When Asn112 was replaced with Ala, Asp, Glu, Lys, His, and Arg by site-directed mutagenesis, the mutant enzymes N112D and N112E, in which Asn112 is replaced with Asp and Glu, respectively, were secreted as an active form into Escherichia coli culture medium, while the other four were not. In the hydrolysis of a neutral substrate N-[3-(2-furyl)acryloyl]-Gly-L-Leu amide, the kcat/Km values of N112D and N112E exhibited bell-shaped pH-dependence, as did the wild-type thermolysin (WT). The acidic pKa of N112D was 5.7 +/- 0.1, higher by 0.4 +/- 0.2 units than that of WT, suggesting that the introduced negative charge suppressed the protonation of Glu143 or Zn2+-OH. In the hydrolysis of a negatively charged substrate, N-carbobenzoxy-l-Asp-l-Phe methyl ester (ZDFM), the pH-dependence of kcat/Km of the mutants decreased with increase in pH from 5.5 to 8.5, while that of WT was bell-shaped. This difference might be explained by the electrostatic repulsion between the introduced Asp/Glu and ZDFM, suggesting that introducing ionizing residues into the active site of thermolysin might be an effective means of modifying its pH-activity profile.  相似文献   

5.
In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151alphaF and Q50betaN, showed two- to threefold-increased catalytic efficiency (k(cat)/K(m)) compared to wild-type CA130. Their K(m) values were decreased by ca. 50%, and the k(cat) values increased to 14.4 and 16.9 s(-1), respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121betaA and K198betaA had a 30 to 58% longer half-life than wild-type CA130, and K198betaA and D286betaA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50betaN/K198betaA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.  相似文献   

6.
M Kubo  Y Mitsuda  M Takagi    T Imanaka 《Applied microbiology》1992,58(11):3779-3783
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

7.
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

8.
Upon mutation of Asp153 by asparagine, the catalytic activity of agmatinase (agmatine ureohydrolase, EC 3.5.3.11) from Escherichia coli was reduced to about 5% of wild-type activity. Tryptophan emission fluorescence (lambdamax = 340 nm), and CD spectra were nearly identical for wild-type and D153N agmatinases. The Km value for agmatine (1.6 +/- 0.1 mm), as well as the Ki for putrescine inhibition (12 +/- 2 mm) and the interaction of the enzyme with the required metal ion, were also not altered by mutation. Three-dimensional models, generated by homology modelling techniques, indicated that the side chains of Asp153 and Asn153 can perfectly fit in essentially the same position in the active site of E. coli agmatinase. Asp153 is suggested to be involved, by hydrogen bond formation, in the stabilization and orientation of a metal-bound hydroxide for optimal attack on the guanidinium carbon of agmatine. Thus, the disruption of this hydrogen bond is the likely cause of the greately decreased catalytic efficiency of the D153N variant.  相似文献   

9.
When theoretical methods are used to predict the properties of a given system, such as the effects of the substitution of a specific amino acid on the activity or stability of a protein as a whole, the accuracy of the prediction is directly dependent on the validity of the underlying model. A common error, however, is to attempt to improve a basically crude model by performing one aspect of the calculation in a rigorous manner. The accuracy of the model as a whole will remain limited by the crudest approximation or weakest assumption. To demonstrate the principle that nothing can be gained by performing extensive calculations using a basically crude underlying model we compare the predictive power of three models in relation to activity and stability data for 78 triple-site sequence variants of the lambda-repressor protein. This system has recently been analysed in terms of a conceptionally simple, but computationally elaborate model for the prediction of the energy of a protein in which amino acid residues in the core of the protein have been mutated. We show that comparable, if not better agreement with the experimental data can be reached using either of two much simpler models, based on straightforward structural considerations, which do not require elaborate calculations on a computer.  相似文献   

10.
路遥  蒋立科  陈美玲  还连栋  钟瑾 《微生物学报》2010,50(11):1481-1487
【目的】通过定点突变技术改变乳链菌肽(nisin)特定位置氨基酸,获得性质改善的nisin突变体,为扩大其应用范围提供依据。【方法】在抑菌谱扩大的nisin单突变体M21K nisinZ的基础上,对M21K nisZ基因第29位丝氨酸密码子进行定点突变;将其克隆至乳酸菌表达载体pMG36e,并在Lactococcus lactis NZ9800中进行表达;双突变体M21K/S29K nisinZ经分离纯化后检测其在抑菌活性、抑菌谱和稳定性等方面的变化。【结果】与单突变体M21K nisinZ及野生型nisinZ(wild-type,WT)相比,双突变体M21K/S29K nisinZ对指示菌的抑菌活性虽有所下降,但其对温度及pH值的稳定性有显著提高。同时其抑菌谱与M21K nisinZ相同,可抑制革兰氏阴性菌,扩大了WT的抑菌谱。【结论】通过改变nisin分子特定位置的氨基酸可以改善nisin分子的理化性质,有可能得到应用范围更广的nisin品种。  相似文献   

11.
精氨酸脱亚胺酶(ADI)是一种针对精氨酸缺陷型癌症(如:肝癌、黑素瘤)的新药,目前处于临床三期试验。文中通过定点突变技术分析了精氨酸脱亚胺酶的特定氨基酸位点对酶活力的影响机制。针对已报道的关键氨基酸残基A128、H404、I410,采用QuikChange法进行定点突变,获得ADI突变株M1(A128T)、M2(H404R)、M3(I410L)和M4(A128T/H404R)。将突变株在大肠杆菌BL21(DE3)中进行重组表达,并对纯化获得的突变蛋白进行酶学性质研究。结果表明,突变位点A128T和H404R对ADI最适pH的提高,生理中性(pH 7.4)条件下的酶活力和稳定性的提高,以及Km值的降低均具有显著的作用。研究结果为阐明ADI的酶活力影响机制和蛋白质的理性改造提供了一定的依据。  相似文献   

12.
We have used human beta-tropomyosin produced in Escherichia coli and deletion mutants obtained by site-directed mutagenesis to analyse the conformational stability of this molecule under various experimental conditions. Protein engineering has allowed us to answer some questions raised by stability analysis of the wild-type tropomyosin. The complex pattern of denaturation is due neither to heterogeneity of the preparation nor to head-to-tail interactions. The N- and C-termini are not of importance for the thermal stability of the molecule. On the contrary, deletion of the 31 C-terminus amino acids leads to a dramatic decrease of the stability observed in guanidinium chloride. This lowering is interpreted as the participation of one more guanidinium chloride ions to the denaturation equilibrium. Analysis of the stability in presence of organic solvents reveals that acetonitrile and methanol induce opposite effects. Investigation of these effects by three methods (CD, fluorescence and electrophoresis that measure respectively the content in alpha-helix, the contact between the two strands and the strands exchange) leads to the conclusion that strand separation can precede the denaturation of the alpha-helix.  相似文献   

13.
Xylose isomerases (XIs) from Thermoanaerobacterium thermosulfurigenes (TTXI) and Thermotoga neapolitana (TNXI) are 70.4% identical in their amino acid sequences and have a nearly superimposable crystal structure. Nonetheless, TNXI is much more thermostable than TTXI. Except for a few additional prolines and fewer Asn and Gln residues in TNXI, no other obvious differences in the enzyme structures can explain the differences in their stabilities. TNXI has two additional prolines in the Phe59 loop (Pro58 and Pro62). Mutations Gln58Pro, Ala62Pro and Gln58Pro/Ala62Pro in TTXI and their reverse counterpart mutations in TNXI were constructed by site-directed mutagenesis. Surprisingly, only the Gln58Pro mutation stabilized TTXI. The Ala62Pro and Gln58Pro/Ala62Pro mutations both dramatically destabilized TTXI. Analysis of the three-dimensional (3D) structures of TTXI and its Ala62Pro mutant derivative showed a close van der Waal's contact between Pro62-C(delta) and atom Lys61-C(beta) (2.92 A) thus destabilizing TTXI. All the reverse counterpart mutations destabilized TNXI thus confirming that these two prolines play important roles in TNXI's thermostability. TTXI's active site has been previously engineered to improve its catalytic efficiency toward glucose and increase its thermostability. The same mutations were introduced into TNXI, and similar trends were observed, but to different extents. Val185Thr mutation in TNXI is the most efficient mutant derivative with a 3.1-fold increase in its catalytic efficiency toward glucose. With a maximal activity at 97 degrees C of 45.4 U/mg on glucose, this TNXI mutant derivative is the most active type II XI ever reported. This 'true' glucose isomerase engineered from a native xylose isomerase has now comparable kinetic properties on glucose and xylose.  相似文献   

14.
Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of growth in the adult central nervous system. Use of the enzyme chondroitinase ABC I (ChABC I) as a strategy to reduce CSPG inhibition in experimental models of spinal cord injury has led to observations of its remarkable capacity for repair. More importantly, ChABC therapy has been demonstrated to promote significant recovery of function to spinal injured animals. Despite this incomparable function of ChABC I, its clinical application has been limited because of its thermal instability as reported in the literature. In a recent study by Nazari-Robati et al., thermal stability of ChABC I was improved by protein engineering using site-directed mutagenesis method. Here, in this study, molecular dynamics simulations were used to take a closer look into the phenomenon leading to the experimentally observed thermal stability improvement followed by the corresponding site-directed mutagenesis. We concluded that the mutations induce local flexibility along with a re-conformation into the native structure which consequently increase the protein thermal stability.  相似文献   

15.
Bacterial asparaginases (EC 3.5.1.1) have attracted considerable attention because enzymes of this group are used in the therapy of certain forms of leukemia. Class II asparaginase from Escherichia coli (EcA), a homotetramer with a mass of 138 kDa, is especially effective in cancer therapy. However, the therapeutic potential of EcA is impaired by the limited stability of the enzyme in vivo and by the induction of antibodies in the patients. In an attempt to modify the properties of EcA, several variants with amino acid replacements at subunit interfaces were constructed and characterized. Chemical and thermal denaturation analysis monitored by activity, fluorescence, circular dichroism, and differential scanning calorimetry showed that certain variants with exchanges that weaken dimer–dimer interactions exhibited complex denaturation profiles with active dimeric and/or inactive monomeric intermediates appearing at low denaturant concentrations. By contrast, other EcA variants showed considerably enhanced activity and stability as compared to the wild-type enzyme. Thus, even small changes at a subunit interface may markedly affect EcA stability without impairing its catalytic properties. Variants of this type may have a potential for use in the asparaginase therapy of leukemia.  相似文献   

16.
The plasma phospholipid transfer protein (PLTP) is an important regulator of high density lipoprotein (HDL) metabolism. We have here, based on sequence alignments of the plasma LPS-binding/lipid transfer protein family and the X-ray structure of the bactericidal/permeability increasing protein (BPI), modeled the structure of PLTP. The model predicts a two-domain architecture with conserved lipid-binding pockets consisting of apolar residues in each domain. By site-directed mutagenesis of selected amino acid residues and transient expression of the protein variants in HeLa cells, the pockets are shown to be essential for PLTP-mediated phospholipid transfer. A solid phase ligand binding assay was used to determine the HDL-binding ability of the mutants. The results suggest that the observed decreases in phospholipid transfer activity of the N-terminal pocket mutants cannot be attributed to altered HDL-binding, but the C-terminal lipid-binding pocket may be involved in the association of PLTP with HDL. Further, the essential structural role of a disulfide bridge between cysteine residues 146 and 185 is demonstrated. The structural model and the mutants characterized here provide powerful tools for the detailed analysis of the mechanisms of PLTP function.  相似文献   

17.
The objective of this work was to improve the acid stability of alpha amylase from Bacillus licheniformis (BLA) under acidic conditions by site-directed mutagenesis. Based on the analysis of three dimensional structure of BLA, five histidine residues at positions 281, 289, 293, 316, and 327 in BLA were substituted by arginine residues and aspartic acid residues, respectively. Ten mutants H281R/D, H289R/D, H293R/D, H316R/D, and H327R/D were obtained and H293R, H316R, and H327R were active at pH 4.5 and 6.5. Triple mutations of BLA was modified for the construction of H293R/H316R/H327R. Compared with wild type, which lost the activity, H293R, H316R, H327R, and H293R/H316R/H327R could maintain 8, 10, 20, 31% of the initial activity when incubated at pH 4.5 and 70 °C for 40 min, respectively. The results combined with three-dimensional structure analysis demonstrated that H293R, H316R, H327R, and H293R/H316R/H327R showed an improved acid stability under low pH condition as a result of the interactions of electrostatic fields, hydrogen bonding, and hydrophilcity. This work provides the theoretical basis and background data on the improvement of acid stability in BLA for satisfying the industrial requirements by protein engineering, which is beneficial to molecular modification of other industrial enzymes for acid-tolerance ability.  相似文献   

18.
A B72.3 Fab/sTn(2) complex was modeled from the known structure of B72.3 Fab and the dimeric Tn-serine cluster (sTn(2)). In the complex model, the side chains of 15 heavy- and light-chain complementarity-determining region (CDR) residues and the main chains of two light-chain CDR residues contact the sTn(2) epitope. Among 15 CDR residues which contact sTn(2) in the model, two heavy-chain residues (Ser95 and Tyr97) and light-chain CDR residue (Tyr96) have been confirmed in a previous study. To test the accuracy of the computational model, further site-directed mutagenesis was performed by alanine scanning on the remaining 12 residues that are predicted in the model to have side-chain interactions with sTn(2). Of these 12 mutants, eight that are all from the heavy-chain (His32Ala, Ala33Leu, Tyr50Ala, Ser52Ala, Asn52Ala, Asp56Ala, Lys58Ala and Tyr96Ala) had significantly reduced sTn(2) affinities, and four consisting of three light-chain mutations (Asn32Ala, Trp92Ala and Thr94Ala) and one heavy-chain mutation (His35Ala) retained wild-type sTn(2) affinity. On the whole, this evidence suggests that the complex model, although not perfect, is correct in many of its features. In a more general vein, these results lend credibility to the computational modeling approach for the study of the molecular basis of antigen-antibody complexes.  相似文献   

19.
Sun Y  Yang H  Wang W 《Biotechnology letters》2011,33(10):2049-2055
Site-directed mutagenesis was applied to enhance the thermostability and enzymatic activity of cholesterol oxidase (ChOx) isolated from Brevibacterium sp. Three amino acid residues (Q153E, F128L, and S143H) located near the FAD-binding site of the enzyme were substituted based on structural analysis. The specific activity of the two-sites mutant Q153E/F128L increased by 11.6% and the relative activity increased by 47% when grown for 2 h at 50°C. This mutant is a potential industrial strain for producing ChOx.  相似文献   

20.
本研究旨在利用理性设计的方法来提高来源于土曲霉Aspergillus terreus的酸性脂肪酶ATL的催化活力。通过同源比对,选择脂肪酶盖子区域和底物结合口袋域中的位点进行定点突变,得到8种ATL的突变脂肪酶。结果发现,盖子区域突变酶ATLLid与底物结合口袋域突变酶ATLV218W的催化活性显著提高。ATLLid和ATLV218W对底物对硝基苯酚月桂酸酯p-nitrophenyl laurate(p-NPL)的催化活性最高,k_(cat)值较ATL分别提高了39.37倍和50.79倍,k_(cat)/K_m值较ATL分别提高了2.85倍和8.48倍。与ATL相比,ATLLid和ATLV218W的热稳定性略有下降,最适p H为5.0,p H 4.0–8.0具有较好的稳定性,说明突变未对ATL的嗜酸耐酸特性产生影响。通过同源建模模拟及分子对接技术分析底物p-NPL与酶分子间的相互作用,解析了ATLLid和ATLV218W催化活性提高的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号