首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mice without oxysterol 7alpha-hydroxylase, an enzyme of the alternate bile acid synthesis pathway with a sexually dimorphic expression pattern, were constructed by the introduction of a null mutation at the Cyp7b1 locus. Animals heterozygous (Cyp7b1(+/-)) and homozygous (Cyp7b1(-/-)) for this mutation were grossly indistinguishable from wild-type mice. Plasma and tissue levels of 25- and 27-hydroxycholesterol, two oxysterol substrates of this enzyme with potent regulatory actions in cultured cells, were markedly elevated in Cyp7b1(-/-) knockout animals. Parameters of bile acid metabolism as well as plasma cholesterol and triglyceride levels in male and female Cyp7b1(-/-) mice were normal. The cholesterol contents of major tissues were not altered. In vivo sterol biosynthetic rates were unaffected in multiple tissues with the exception of the male kidney, which showed a approximately 40% decrease in de novo synthesis versus controls. We conclude that the major physiological role of the CYP7B1 oxysterol 7alpha-hydroxylase is to metabolize 25- and 27-hydroxycholesterol and that loss of this enzyme in the liver is compensated for by increases in the synthesis of bile acids by other pathways. A failure to catabolize oxysterols in the male kidney may lead to a decrease in de novo sterol synthesis.  相似文献   

3.
Bile acids are synthesized via the classic pathway initiated by cholesterol 7alpha-hydroxylase (CYP7A1), and via alternate pathways, one of which is initiated by sterol 27-hydroxylase (CYP27). These studies used mice lacking cholesterol 7alpha-hydroxylase (Cyp7a1(-/-)) to establish whether the loss of the classic pathway affected cholesterol homeostasis differently in males and females, and to determine if the rate of bile acid synthesis via alternate pathways was responsive to changes in the enterohepatic flux of cholesterol and bile acids. In both the Cyp7a1(-/-) males and females, the basal rate of bile acid synthesis was only half of that in matching Cyp7a1(+/+) animals. Although bile acid pool size contracted markedly in all the Cyp7a1(-/-) mice, the female Cyp7a1(-/-) mice maintained a larger, more cholic acid-rich pool than their male counterparts. Intestinal cholesterol absorption in the Cyp7a1(-/-) males fell from 46% to 3%, and in the matching females from 58% to 17%. Bile acid synthesis in Cyp7a1(+/+) males and females was increased 2-fold by cholesterol feeding, and 4-fold by cholestyramine treatment, but was not changed in matching Cyp7a1(-/-) mice by either of these manipulations. In the Cyp7a1(-/-) mice fed cholesterol, hepatic cholesterol concentrations increased only marginally in the males, but rose almost 3-fold in the females. CYP7A1 activity and mRNA levels were greater in females than in males, and were increased by cholesterol feeding in both sexes. CYP27 activity and mRNA levels did not vary as a function of CYP7A1 genotype, gender, or dietary cholesterol intake. We conclude that in the mouse the rate of bile acid synthesis via alternative pathways is unresponsive to changes in the enterohepatic flux of cholesterol and bile acid, and that factors governing gender-related differences in bile acid synthesis, pool size, and pool composition play an important role in determining the impact of CYP7A1 deficiency on cholesterol homeostasis in this species.  相似文献   

4.
Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.  相似文献   

5.
Cytochrome P450 (CYP) 27A1 is a key enzyme in both the acidic and neutral pathways of bile acid biosynthesis accepting cholesterol and ring-hydroxylated sterols as substrates introducing a (25R)26-hydroxy and ultimately a (25R)26-acid group to the sterol side-chain. In human, mutations in the CYP27A1 gene are the cause of the autosomal recessive disease cerebrotendinous xanthomatosis (CTX). Surprisingly, Cyp27a1 knockout mice (Cyp27a1−/−) do not present a CTX phenotype despite generating a similar global pattern of sterols. Using liquid chromatography – mass spectrometry and exploiting a charge-tagging approach for oxysterol analysis we identified over 50 cholesterol metabolites and precursors in the brain and circulation of Cyp27a1−/− mice. Notably, we identified (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids, indicating the presence of an additional sterol 26-hydroxylase in mouse. Importantly, our analysis also revealed elevated levels of 7α-hydroxycholest-4-en-3-one, which we found increased the number of oculomotor neurons in primary mouse brain cultures. 7α-Hydroxycholest-4-en-3-one is a ligand for the pregnane X receptor (PXR), activation of which is known to up-regulate the expression of CYP3A11, which we confirm has sterol 26-hydroxylase activity. This can explain the formation of (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids; the acid with the former stereochemistry is a liver X receptor (LXR) ligand that increases the number of oculomotor neurons in primary brain cultures. We hereby suggest that a lack of a motor neuron phenotype in some CTX patients and Cyp27a1−/− mice may involve increased levels of 7α-hydroxycholest-4-en-3-one and activation PXR, as well as increased levels of sterol 26-hydroxylase and the production of neuroprotective sterols capable of activating LXR.  相似文献   

6.
A comprehensive study of cholesterol, bile acid, and lipoprotein metabolism was undertaken in two strains of hamster that differed markedly in their response to a sucrose-rich/low fat diet. Under basal conditions, hamsters from the LPN strain differed from Janvier hamsters by a lower cholesterolemia, a higher postprandial insulinemia, a more active cholesterogenesis in both liver [3- to 4-fold higher 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR) activity and mRNA] and small intestine, and a lower hepatic acyl-coenzyme A:cholesterol acyltransferase activity. Cholesterol saturation indices in the gallbladder bile were similar for both strains, but the lipid concentration was 2-fold higher in LPN than in Janvier hamsters. LPN hamsters had a lower capacity to transform cholesterol into bile acids, shown by the smaller fraction of endogenous cholesterol converted into bile acids prior to fecal excretion (0.34 vs. 0.77). In LPN hamsters, the activities of cholesterol 7alpha-hydroxylase (C7OHase) and sterol 27-hydroxylase (S27OHase), the two rate-limiting enzymes of bile acid synthesis, were disproportionably lower (by 2-fold) to that of HMG-CoAR. When fed a sucrose-rich diet, plasma lipids increased, dietary cholesterol absorption improved, hepatic activities of HMG-CoA reductase, C7Ohase, and S27OHase were reduced, and intestinal S27OHase was inhibited in both strains. Despite a similar increase in the biliary hydrophobicity index due to the bile acid enrichment in chenodeoxycholic acid and derivatives, only LPN hamsters had an increased lithogenic index and developed cholesterol gallstones (75% incidence), whereas Janvier hamsters formed pigment gallstones (79% incidence).These studies indicate that LPN hamsters have a genetic predisposition to sucrose-induced cholesterol gallstone formation related to differences in cholesterol and bile acid metabolism.  相似文献   

7.
27-Hydroxycholesterol (27OH) is the major oxysterol in human atherosclerotic lesions, followed by 7-ketocholesterol (7K). Whereas 7K probably originates nonenzymically, 27OH arises by the action of sterol 27-hydroxylase, a cytochrome P450 enzyme expressed at particularly high levels in the macrophage and proposed to represent an important pathway by which macrophages eliminate excess cholesterol. We hypothesized and here show that 27-hydroxylated 7-ketocholesterol (270H-7K) is present in human lesions, probably generated by the action of sterol 27-hydroxylase on 7K. Moreover, [(3)H]27OH-7K was produced by human monocyte-derived macrophages (HMDMs) supplied with [(3)H]7K but not in HMDMs from a patient with cerebrotendinous xanthomatosis (CTX) shown to have a splice-junction mutation of sterol 27-hydroxylase. Whereas [(3)H]27OH-7K was predominantly secreted into the medium, [(3)H]-27OH formed from [(3)H]-cholesterol was mostly cell-associated. The majority of supplied [(3)H]7K was metabolized beyond 27OH-7K to aqueous-soluble products (apparently bile acids derived from the sterol 27-hydroxylase pathway). Metabolism to aqueous-soluble products was ablated by a sterol 27-hydroxylase inhibitor and absent in CTX cells. Sterol 27-hydroxylase therefore appears to represent an important pathway by which macrophages eliminate not only cholesterol but also oxysterols such as 7K. The fact that 7K (and cholesterol) still accumulates in lesions and foam cells indicates that this pathway may be perturbed in atherosclerosis and affords a new opportunity for the development of therapeutic strategies to regress atherosclerotic lesions.  相似文献   

8.
Cerebrotendinous xanthomatosis (CTX) is a rare, recessively inherited lipid storage disease characterized by a markedly reduced production of chenodeoxycholic acid and an increased formation of 25-hydroxylated bile alcohols and cholestanol. Patients with this disease are known to have mutations in the sterol 27-hydroxylase (Cyp27) gene. However, one study showed that mice with a disrupted Cyp27 gene did not have any CTX-related clinical or biochemical abnormalities. To explore the reason, hepatic cholesterol, cholestanol, and 12 intermediates in bile acid biosynthetic pathways were quantified in 10 Cyp27(-/-) and 7 Cyp27(+/+) mice, two CTX patients (untreated and treated with chenodeoxycholic acid), and four human control subjects by high resolution gas chromatography-mass spectrometry. Mitochondrial 27-hydroxycholesterol and 5beta-cholestane-3alpha,7alpha,12alpha,27-tetrol were virtually absent in both Cyp27(-/-) mice and CTX patients. In Cyp27(-/-) mice, microsomal concentrations of intermediates in the early bile acid biosynthetic pathway (7alpha-hydroxycholesterol, 7alpha-hydroxy-4-cholesten-3-one, 7alpha,12alpha-dihydroxy-4-cholesten-3-one, and 5beta-cholestane-3alpha,7alpha,12alpha-triol), 25-hydroxylated bile alcohols (5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, 5beta-cholestane-3alpha,7alpha,12alpha,23R,25-pentol, and 5beta-cholestane-3alpha,7alpha,12alpha,24R, 25-pentol), and cholestanol were all significantly elevated compared with those in Cyp27(+/+) mice, although the levels were lower than those in untreated CTX patients. The intermediate levels in early bile acid biosynthesis were more elevated in male (16;-86% of CTX) than in female Cyp27(-/-) mice (7-30% of CTX). In contrast, 25-hydroxylated bile alcohol concentrations were not significantly different between male and female Cyp27(-/-) mice and were considerably lower (less than 14%) than those in CTX patients.These results suggest that 1) in Cyp27(-/-) mice, especially in females, classic bile acid biosynthesis via 7alpha-hydroxycholesterol is not stimulated as much as in CTX patients; and 2) formed 25-hydroxylated bile alcohols are more efficiently metabolized in Cyp27(-/-) mice than in CTX patients.  相似文献   

9.
10.
11.
The Smith-Lemli-Opitz syndrome (SLOS) is a congenital birth defect syndrome caused by a deficiency of 3beta-hydroxysterol Delta(7)-reductase, the final enzyme in the cholesterol biosynthetic pathway. The patients have reduced plasma and tissue cholesterol concentrations with the accumulation of 7-dehydrocholesterol and 8-dehydrocholesterol. Bile acid synthesis is reduced and unnatural cholenoic and cholestenoic acids have been identified in some SLOS patients. To explore the mechanism of the abnormal bile acid production, the activities of key enzymes in classic and alternative bile acid biosynthetic pathways (microsomal cholesterol 7alpha-hydroxylase and mitochondrial sterol 27-hydroxylase) were measured in liver biopsy specimens from two mildly affected SLOS patients. The effects of 7- and 8-dehydrocholesterols on these two enzyme activities were studied by using liver from SLOS model rats that were treated with the Delta(7)-reductase inhibitor (BM15.766) for 4 months and were comparable with more severe SLOS phenotype in plasma and hepatic sterol compositions. In the SLOS patients, cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase were not defective. In BM15.766-treated rats, both enzyme activities were lower than those in control rats and they were competitively inhibited by 7- and 8-dehydrocholesterols. Rat microsomal cholesterol 7alpha-hydroxylase did not transform 7-dehydrocholesterol or 8-dehydrocholesterol into 7alpha-hydroxylated sterols. In contrast, rat mitochondrial sterol 27-hydroxylase catalyzed 27-hydroxylation of 7- and 8-dehydrocholesterols, which were partially converted to 3beta-hydroxycholestadienoic acids. Addition of microsomes to the mitochondrial 27-hydroxylase assay mixture reduced 27-hydroxydehydrocholesterol concentrations, which suggested that 27-hydroxydehydrocholesterols were further metabolized by microsomal enzymes. These results suggest that reduced normal bile acid production is characteristic of severe SLOS phenotype and is caused not only by depletion of hepatic cholesterol but also by competitive inhibition of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase activities by accumulated 7- and 8-dehydrocholesterols. Unnatural bile acids are synthesized mainly by the alternative pathway via mitochondrial sterol 27-hydroxylase in SLOS.  相似文献   

12.
Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7alpha-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12alpha-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19-23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7alpha-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool.  相似文献   

13.
In man, hepatic mitochondrial sterol 27-hydroxylase and microsomal cholesterol 7-hydroxylase initiate distinct pathways of bile acid biosynthesis from cholesterol, the “acidic” and “neutral” pathways, respectively. A similar acidic pathway in the rat has been hypothesized, but its quantitative importance and ability to be regulated at the level of sterol 27-hydroxylase are uncertain. In this study, we explored the molecular regulation of sterol 27-hydroxylase and the acidic pathway of bile acid biosynthesis in primary cultures of adult rat hepatocytes. mRNA and protein turnover rates were approximately 10-fold slower for sterol 27-hydroxylase than for cholesterol 7-hydroxylase. Sterol 27-hydroxylase mRNA was not spontaneously expressed in culture. The sole requirement for preserving sterol 27-hydroxylase mRNA at the level of freshly isolated hepatocytes (0 h) after 72 h was the addition of dexamethasone (0.1 μM; > 7-fold induction). Sterol 27-hydroxylase mRNA, mass and specific activity were not affected by thyroxine (1.0 μM), dibutyryl-cAMP (50 μM), nor squalestatin 1 (150 nM-1.0 μM), an inhibitor of cholesterol biosynthesis. Taurocholate (50 μM), however, repressed sterol 27-hydroxylase mRNA levels by 55%. Sterol 27-hydroxylase specific activity in isolated mitochondria was increased > 10-fold by the addition of 2-hydroxypropyl-β-cyclodextrin. Under culture conditions designed to maximally repress cholesterol 7-hydroxylase and bile acid synthesis from the neutral pathway but maintain sterol 27-hydroxylase mRNA and activity near 0 h levels, bile acid synthesis from [14C]cholesterol remained relatively high and consisted of β-muricholate, the product of chenodeoxycholate in the rat. We conclude that rat liver harbors a quantitatively important alternative pathway of bile acid biosynthesis and that its initiating enzyme, sterol 27-hydroxylase, may be slowly regulated by glucocorticoids and bile acids.  相似文献   

14.
The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied. In contrast to homozygotes, heterozygotes had increased body weight and were mildly hypercholesterolemic, with increased numbers of lipoprotein particles in the low density lipoprotein size range. Cyp7A expression was not increased in heterozygotes but was in homozygotes, suggesting that parts of the homozygous phenotype are secondary to increased cyp7A expression and activity. Homozygotes exhibited pronounced hepatomegaly and dysregulation in hepatic cholesterol, bile acid, and fatty acid metabolism. Hepatic cholesterol synthesis and synthesis of bile acid intermediates were increased; however, side chain cleavage was impaired, leading to decreased bile salt concentrations in gallbladder bile. Expression of Na-taurocholate cotransporting polypeptide, the major sinusoidal bile salt transporter, was increased, and that of bile salt export pump, the major canalicular bile salt transporter, was decreased. Gender played a modifying role in the homozygous response to cyp27A deficiency, with females being generally more severely affected. Thus, both cyp27A genotype and gender affected the regulation of hepatic bile acid, cholesterol, and fatty acid metabolism.  相似文献   

15.
Our purpose was to examine the in vitro modulation of liver mitochondrial sterol 27-hydroxylase (S27OHase) and microsomal cholesterol 7alpha-hydroxylase (CH7alphaOHase) activities by certain drugs, sterols, oxysterols and bile acids, and to compare the influence of sex, age, diet and cholestyramine on these activities, in the hamster. In vitro, 7beta-hydroxycholesterol and 5alpha-cholestan-3beta-ol (cholestanol) were strong inhibitors (at 2 microM) of both enzyme activities, while 5beta-cholestan-3alpha-ol (epicoprostanol, 2 microM) and cyclosporin A (20 microM) inhibited S27OHase, but not CH7alphaOHase. These data suggest that a hydroxyl group at the 7alpha position is not required to inhibit CH7alphaOHase and that the presence of an aliphatic CH2-CH-(CH3)2 chain appears to be structurally important for S27OHase activity. Both enzyme activities remained unchanged by hyodeoxycholic acid (40 or 80 microM) while epicoprostanol inhibited only S27OHase and chenodeoxycholic acid only CH7alphaOHase. Adult (9-week old) male or female hamsters displayed similar S27OHase activity but the CH7alphaOHase activity was lower in females than in males, suggesting that the neutral bile acid pathway has a less important role in females. In male hamsters, S27OHase activity did not change with age, while CH7alphaOHase activity significantly increased (one-year vs 9-week old). A semi-purified sucrose-rich (lithogenic) diet significantly lowered both enzyme activities compared to the commercial diet. Cholestyramine induced a stimulation of both enzymes, slightly more vigorously however for the key enzyme involved in the neutral pathway. Taken together, these data indicate that the two enzymes are separately regulated and that certain drugs or steroid compounds can be useful for specifically inhibiting or stimulating the neutral or acidic bile acid pathway.  相似文献   

16.
17.
There is no consensus whether hepatic lipid regulatory enzymes play primary or secondary roles in cholesterol cholelithiasis. We have used inbred mice with Lith genes that determine cholesterol gallstone susceptibility to evaluate the question. We studied activities of regulatory enzymes in cholesterol biosynthesis (HMG-CoA reductase), cholesterol esterification (acyl-CoA:cholesterol acyltransferase) and the "neutral" (cholesterol 7alpha-hydroxylase) and "acidic" (sterol 27-hydroxylase) pathways of bile salt synthesis in strains C57L/J and SWR/J as well as recombinant inbred (AKXL-29) mice, all of which have susceptible Lith alleles, and compared them to AKR/J mice with resistant Lith alleles. We determined hepatic enzyme activities of male mice before and at frequent intervals during feeding a lithogenic diet (15% dairy fat, 1% cholesterol, 0.5% cholic acid) for 12 weeks. Basal activities on chow show significant genetic variations for HMG-CoA reductase, sterol 27-hydroxylase, and acyl-CoA: cholesterol acyltranferase, but not for cholesterol 7alpha-hydroxylase. In response to the lithogenic diet, activities of the regulatory enzymes in the two bile salt synthetic pathways are coordinately down-regulated and correlate inversely with prevalence rates of cholesterol crystals and gallstones. Compared with gallstone-resistant mice, significantly higher HMG-CoA reductase activities together with lower activities of both bile salt synthetic enzymes are hallmarks of the enzymatic phenotype in mice with susceptible Lith alleles. The most parsimonious explanation for the multiple enzymatic alterations is that the primary Lith phenotype induces secondary events to increase availability of cholesterol to supply the sterol to the hepatocyte canalicular membrane for hypersecretion into bile.  相似文献   

18.
Although the pool of cholesterol in the adult central nervous system (CNS) is large and of constant size, little is known of the process(es) involved in regulation of sterol turnover in this pool. In 7-week-old mice, net excretion of cholesterol from the brain equaled 1.4 mg/day/kg body weight, and from the whole animal was 179 mg/day/kg. Deletion of cholesterol 24-hydroxylase, an enzyme highly expressed in the CNS, did not alter brain growth or myelination, but reduced sterol excretion from the CNS 64% to 0.5 mg/day/kg. In mice with a mutation in the Niemann-Pick C gene that had ongoing neurodegeneration, sterol excretion from the CNS was increased to 2.3 mg/day/kg. Deletion of cholesterol 24-hydroxylase activity in these animals reduced net excretion only 22% to 1.8 mg/day/kg. Thus, at least two different pathways promote net sterol excretion from the CNS. One uses cholesterol 24-hydroxylase and may reflect sterol turnover in large neurons in the brain. The other probably involves the movement of cholesterol or one of its metabolites across the blood-brain barrier and may more closely mirror sterol turnover in pools such as glial cell membranes and myelin.  相似文献   

19.
Baboons with high and low lipemic responses to dietary lipids differ in intestinal cholesterol absorption and hepatic cholesterol metabolism. ATP-binding cassette (ABC) transporters play an important role in cholesterol absorption and hepatic cholesterol metabolism. Using frozen tissues from high- and low-responding baboons maintained on the cholesterol and fat-enriched diet, we determined the relative expression of ABCA1, ABCG5, ABCG8, and 27-hydroxylase genes in the liver and intestine using TaqMan real-time polymerase chain reaction. There was no consistent difference in the expression of ABC-transporters and 27-hydroxylase in the intestine between high- and low-responding baboons. However, hepatic expression of sterol 27-hydroxylase, ABCG5, and ABCG8 was higher in low-responding baboons than in high-responding baboons. There was also a significant correlation between the expression of sterol 27-hydroxylase and ABCG5, and ABCG8 in both the liver and the intestine. These results suggest that differences in hepatic lipid metabolism but not in cholesterol absorption between high- and low-responding baboons observed previously may be mediated by the differences in the expression levels of 27-hydroxylase, ABCG5, and ABCG8.  相似文献   

20.
Most cholesterol turnover takes place in the liver and involves the conversion of cholesterol into soluble and readily excreted bile acids. The synthesis of bile acids is limited to the liver, but several enzymes in the bile acid biosynthetic pathway are expressed in extra-hepatic tissues and there also may contribute to cholesterol turnover. An example of the latter type of enzyme is cholesterol 24-hydroxylase, a cytochrome P450 (CYP46A1) that is expressed at 100-fold higher levels in the brain than in the liver. Cholesterol 24-hydroxylase catalyzes the synthesis of the oxysterol 24(S)-hydroxycholesterol. To assess the relative contribution of the 24-hydroxylation pathway to cholesterol turnover, we performed balance studies in mice lacking the cholesterol 24-hydroxylase gene (Cyp46a1-/- mice). Parameters of hepatic cholesterol and bile acid metabolism in the mutant mice remained unchanged relative to wild type controls. In contrast to the liver, the synthesis of new cholesterol was reduced by approximately 40% in the brain, despite steady-state levels of cholesterol being similar in the knockout mice. These data suggest that the synthesis of new cholesterol and the secretion of 24(S)-hydroxycholesterol are closely coupled and that at least 40% of cholesterol turnover in the brain is dependent on the action of cholesterol 24-hydroxylase. We conclude that cholesterol 24-hydroxylase constitutes a major tissue-specific pathway for cholesterol turnover in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号