首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example, during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by fluorescent in situ hybridization a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by the lack of constriction and the absence of CENP-A binding. The insertion was associated with a 2.8-kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20–25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name “alpha satellite insertion.” It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites.  相似文献   

2.
Understanding the folding of centromere DNA in the maximally condensed methaphase chromosome remains a basic challenge in cell biology. We propose here a set of structural models with a graphical presentation of alphoid higher order repeat (HOR) distribution in the centromere folding, based on the assumption of encryption key for microtubule-centromere interaction which arises from chromosome-specific crystal-like structure of HORs. Specific HOR leads to a characteristic geometrical pattern which may be responsible for individual microtubule to recognize a specific structure of centromere in each chromosome.  相似文献   

3.
In this study, we have examined a DNA element specific to the centromere domain of human chromosomes. Purified HeLa chromosomes were digested with the restriction enzyme Sau3AI and fractionated by sedimentation through a sucrose gradient. Fractions showing antigenecity to anticentromere (kinetochore) serum obtained from a scleroderma CREST patient were used to construct a DNA library. From this library we found one clone which has specifically hybridized to the centromere domain of metaphase chromosomes using a biotinylated probe DNA and FITC-conjugated avidin. The clone contained a stretch of alphoid DNA dimer. To determine precisely the relative location of the alphoid DNA stretch and the centromere antigen, a method was developed to carry out in situ hybridization of DNA and indirect immunofluorescent staining of antigen on the same cell preparation. Using this method, we have found perfect overlapping of the alphoid DNA sites with the centromere antigen sites in both metaphase chromosomes and nuclei at various stages in the cell cycle. We have also observed this exact correlation at the attachment sites of artificially extended sister chromatids. These results suggest the possibility that alphoid DNA repeats are a key component of kinetochore structure.  相似文献   

4.
We have characterized variant centromeric regions of chromosome 6 segregating in two families. The heteromorphism, 6ph+, stains negatively with G- and Q-banding and darkly with C-banding. The variant C-band regions measure two to three times the length of their homologues. The centromeric regions of the variant chromosome 6 and its homologue are not significantly elongated by adding 5-azacytidine to culture. We determined that the amount of the alphoid centromeric repeat 308 (DZ61), which is chromosome 6 specific, is amplified two- to threefold in the genomes of individuals with the 6ph+ variants. In situ hybridization localized the increase in 308 repeats to the 6ph+ region. These results suggest an association between amplification of chromosome-specific alphoid sequences and enlargement of specific C-band regions.  相似文献   

5.
We have investigated the organization and complexity of alpha satellite DNA on chromosomes 10 and 12 by restriction endonuclease mapping, in situ hybridization (ISH), and DNA-sequencing methods. Alpha satellite DNA on both chromosomes displays a basic dimeric organization, revealed as a 6- and an 8-mer higher-order repeat (HOR) unit on chromosome 10 and as an 8-mer HOR on chromosome 12. While these HORs show complete chromosome specificity under high-stringency ISH conditions, they recognize an identical set of chromosomes under lower stringencies. At the nucleotide sequence level, both chromosome 10 HORs are 50% identical to the HOR on chromosome 12 and to all other alpha satellite DNA sequences from the in situ cross-hybridizing chromosomes, with the exception of chromosome 6. An 80% identity between chromosome 6- and chromosome 10-derived alphoid sequences was observed. These data suggest that the alphoid DNA on chromosomes 6 and 10 may represent a distinct subclass of the dimeric subfamily. These sequences are proposed to be present, along with the more typical dimeric alpha satellite sequences, on a number of different human chromosomes.  相似文献   

6.
We report the interaction between a human centromere antigen and an alphoid DNA, a human centromeric satellite DNA, which consists of 170-bp repeating units. A cloned alphoid DNA fragment incubated with a HeLa cell nuclear extract is selectively immunoprecipitated by the anticentromere sera from scleroderma patients. Immunoprecipitation of the DNA made by primer extension defines the 17-bp segment on the alphoid DNA that is required for formation of DNA-antigen complex. On the other hand, when proteins bound to the biotinylated alphoid DNA carrying the 17-bp motif are recovered by streptavidin agarose and immunoblotted, the 80-kD centromere antigen (CENP-B) is detected. DNA binding experiments for proteins immunoprecipitated with anticentromere serum, separated by gel electrophoresis, and transferred to a membrane strongly suggest that the 80-kD antigen specifically binds to the DNA fragment with the 17-bp motif. The 17-bp motif is termed the "CENP-B box." Alphoid monomers with the CENP-B box are found in all the known alphoid subclasses, with varying frequencies, except the one derived from the Y chromosome so far cloned. These results imply that the interaction of the 80-kD centromere antigen with the CENP-B box in the alphoid repeats may play some crucial role in the formation of specified structure and/or function of human centromere.  相似文献   

7.
8.
Comparison of human and chimpanzee genomes has received much attention, because of paramount role for understanding evolutionary step distinguishing us from our closest living relative. In order to contribute to insight into Y chromosome evolutionary history, we study and compare tandems, higher order repeats (HORs), and regularly dispersed repeats in human and chimpanzee Y chromosome contigs, using robust Global Repeat Map algorithm. We find a new type of long-range acceleration, human-accelerated HOR regions. In peripheral domains of 35mer human alphoid HORs, we find riddled features with ten additional repeat monomers. In chimpanzee, we identify 30mer alphoid HOR. We construct alphoid HOR schemes showing significant human–chimpanzee difference, revealing rapid evolution after human–chimpanzee separation. We identify and analyze over 20 large repeat units, most of them reported here for the first time as: chimpanzee and human ~1.6 kb 3mer secondary repeat unit (SRU) and ~23.5 kb tertiary repeat unit (~0.55 kb primary repeat unit, PRU); human 10848, 15775, 20309, 60910, and 72140 bp PRUs; human 3mer SRU (~2.4 kb PRU); 715mer and 1123mer SRUs (5mer PRU); chimpanzee 5096, 10762, 10853, 60523 bp PRUs; and chimpanzee 64624 bp SRU (10853 bp PRU). We show that substantial human–chimpanzee differences are concentrated in large repeat structures, at the level of as much as ~70% divergence, sizably exceeding previous numerical estimates for some selected noncoding sequences. Smeared over the whole sequenced assembly (25 Mb) this gives ~14% human–chimpanzee divergence. This is significantly higher estimate of divergence between human and chimpanzee than previous estimates.  相似文献   

9.
10.
Satellite DNA (satDNA) constitutes an important fraction of repetitive DNA in eukaryotic genomes, but it is barely known in most species. The high-throughput analysis of satDNA in the grasshopper Pyrgomorpha conica revealed 87 satDNA variants grouped into 76 different families, representing 9.4% of the genome. Fluorescent in situ hybridization (FISH) analysis of the 38 most abundant satDNA families revealed four different patterns of chromosome distribution. Homology search between the 76 satDNA families showed the existence of 15 superfamilies, each including two or more families, with the most abundant superfamily representing more than 80% of all satDNA found in this species. This also revealed the presence of two types of higher-order repeats (HORs), one showing internal homologous subrepeats, as conventional HORs, and an additional type showing non-homologous internal subrepeats, the latter arising by the combination of a given satDNA family with a non-annotated sequence, or with telomeric DNA. Interestingly, the heterologous subrepeats included in these HORs showed higher divergence within the HOR than outside it, suggesting that heterologous HORs show poor homogenization, in high contrast with conventional (homologous) HORs. Finally, heterologous HORs can show high differences in divergence between their constituent subrepeats, suggesting the possibility of regional homogenization.  相似文献   

11.
Assay of centromere function using a human artificial chromosome   总被引:8,自引:0,他引:8  
In order to define a functional human centromere sequence, an artificial chromosome was constructed as a reproducible DNA molecule. Mammalian telomere repeats and a selectable marker were introduced into yeast artificial chromosomes (YACs) containing alphoid DNA from the centromere region of human chromosome 21 in a recombination-deficient yeast host. When these modified YACs were introduced into cultured human cells, a YAC with the alphoid DNA from the α21-I locus, containing CENP-B boxes at a high frequency and a regular repeat array, efficiently formed minichromosomes that were maintained stably in the absence of selection and bound CENP-A, CENP-B, CENP-C and CENP-E. The minichromosomes, 1–5 Mb in size and composed of multimers of the introduced YAC DNA, aligned at metaphase plates and segregated to opposite poles correctly in anaphase. Extensive cytological analyses strongly suggested that the minichromosomes had not acquired host sequences and were formed in all cases by a de novo mechanism. In contrast, minichromosomes were never produced with a modified YAC containing alphoid DNA from the α21-II locus, which contains no CENP-B boxes and has a less regular sequence arrangement. We conclude that α21-I alphoid DNA can induce de novo assembly of active centromere/kinetochore structures on minichromosomes. Received: 22 August 1998 / Accepted: 28 August 1998  相似文献   

12.
Much attention has been devoted to identifying genomic patterns underlying the evolution of the human brain and its emergent advanced cognitive capabilities, which lie at the heart of differences distinguishing humans from chimpanzees, our closest living relatives. Here, we identify two particular intragene repeat structures of noncoding human DNA, spanning as much as a hundred kilobases, that are present in human genome but are absent from the chimpanzee genome and other nonhuman primates. Using our novel computational method Global Repeat Map, we examine tandem repeat structure in human and chimpanzee chromosome 1. In human chromosome 1, we find three higher order repeats (HORs), two of them novel, not reported previously, whereas in chimpanzee chromosome 1, we find only one HOR, a 2mer alphoid HOR instead of human alphoid 11mer HOR. In human chromosome 1, we identify an HOR based on 39-bp primary repeat unit, with secondary, tertiary, and quartic repeat units, fully embedded in human hornerin gene, related to regenerating and psoriatric skin. Such an HOR is not found in chimpanzee chromosome 1. We find a remarkable human 3mer HOR organization based on the ~1.6-kb primary repeat unit, fully embedded within the neuroblastoma breakpoint family genes, which is related to the function of the human brain. Such HORs are not present in chimpanzees. In general, we find that human-chimpanzee differences are much larger for tandem repeats, in particularly for HORs, than for gene sequences. This may be of great significance in light of recent studies that are beginning to reveal the large-scale regulatory architecture of the human genome, in particular the role of noncoding sequences. We hypothesize about the possible importance of human accelerated HOR patterns as components in the gene expression multilayered regulatory network.  相似文献   

13.
Tandemly arrayed non-coding sequences or satellite DNAs (satDNAs) are rapidly evolving segments of eukaryotic genomes, including the centromere, and may raise a genetic barrier that leads to speciation. However, determinants and mechanisms of satDNA sequence dynamics are only partially understood. Sequence analyses of a library of five satDNAs common to the root-knot nematodes Meloidogyne chitwoodi and M. fallax together with a satDNA, which is specific for M. chitwoodi only revealed low sequence identity (32–64%) among them. However, despite sequence differences, two conserved motifs were recovered. One of them turned out to be highly similar to the CENP-B box of human alpha satDNA, identical in 10–12 out of 17 nucleotides. In addition, organization of nematode satDNAs was comparable to that found in alpha satDNA of human and primates, characterized by monomers concurrently arranged in simple and higher-order repeat (HOR) arrays. In contrast to alpha satDNA, phylogenetic clustering of nematode satDNA monomers extracted either from simple or from HOR array indicated frequent shuffling between these two organizational forms. Comparison of homogeneous simple arrays and complex HORs composed of different satDNAs, enabled, for the first time, the identification of conserved motifs as obligatory components of monomer junctions. This observation highlights the role of short motifs in rearrangements, even among highly divergent sequences. Two mechanisms are proposed to be involved in this process, i.e., putative transposition-related cut-and-paste insertions and/or illegitimate recombination. Possibility for involvement of the nematode CENP-B box-like sequence in the transposition-related mechanism and together with previously established similarity of the human CENP-B protein and pogo-like transposases implicate a novel role of the CENP-B box and related sequence motifs in addition to the known function in centromere protein binding.  相似文献   

14.
Centromeric alpha satellite DNA sequences are linked to the kinetochore CENP-B proteins and therefore may be involved in the centromeric function. The high heterogeneity of size of the alphoid blocks raises the question of whether small amount of alphoid DNA or "deletion" of this block may have a pathological significance in the human centromere. In the present study, we analysed the correlation between size variations of alphoid DNA and kinetochore sizes in human chromosome 21 by molecular cytogenetic and immunochemical techniques. FISH analyses of alpha satellite DNA sizes in chromosome 21 homologues correlated well with the variation of their physical size as determined by pulsed field gel electrophoresis (PFGE). By contrast, the immunostaining study of the same homologous chromosomes with antikinetochore antibodies suggested that there is no positive correlation between the alpha satellite DNA block and kinetochore sizes. FISH analysis of chromosome 21-specific alphoid DNA and immunostaining of kinetochore extended interphase chromatin fibers indicate that centromeric kinetochore-specific proteins bind to restricted areas of centromeric DNA arrays. Thus, probably, restricted regions of centromeric DNA play an important role in kinetochore formation, centromeric function and abnormal chromosome segregation leading to non-disjunction.  相似文献   

15.
Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudo-alpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.  相似文献   

16.
Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
Jin W  Lamb JC  Vega JM  Dawe RK  Birchler JA  Jiang J 《The Plant cell》2005,17(5):1412-1423
The centromere of the maize (Zea mays) B chromosome contains several megabases of a B-specific repeat (ZmBs), a 156-bp satellite repeat (CentC), and centromere-specific retrotransposons (CRM elements). Here, we demonstrate that only a small fraction of the ZmBs repeats interacts with CENH3, the histone H3 variant specific to centromeres. CentC, which marks the CENH3-associated chromatin in maize A centromeres, is restricted to an approximately 700-kb domain within the larger context of the ZmBs repeats. The breakpoints of five B centromere misdivision derivatives are mapped within this domain. In addition, the fraction of this domain remaining after misdivision correlates well with the quantity of CENH3 on the centromere. Thus, the functional boundaries of the B centromere are mapped to a relatively small CentC- and CRM-rich region that is embedded within multimegabase arrays of the ZmBs repeat. Our results demonstrate that the amount of CENH3 at the B centromere can be varied, but with decreasing amounts, the function of the centromere becomes impaired.  相似文献   

18.
Centromere protein (CENP) B boxes, recognition sequences of CENP-B, appear at regular intervals in human centromeric alpha-satellite DNA (alphoid DNA). In this study, to determine whether information carried by the primary sequence of alphoid DNA is involved in assembly of functional human centromeres, we created four kinds of synthetic repetitive sequences: modified alphoid DNA with point mutations in all CENP-B boxes, resulting in loss of all CENP-B binding activity; unmodified alphoid DNA containing functional CENP-B boxes; and nonalphoid repetitive DNA sequences with or without functional CENP-B boxes. These four synthetic repetitive DNAs were introduced into cultured human cells (HT1080), and de novo centromere assembly was assessed using the mammalian artificial chromosome (MAC) formation assay. We found that both the CENP-B box and the alphoid DNA sequence are required for de novo MAC formation and assembly of functional centromere components such as CENP-A, CENP-C, and CENP-E. Using the chromatin immunoprecipitation assay, we found that direct assembly of CENP-A and CENP-B in cells with synthetic alphoid DNA required functional CENP-B boxes. To the best of our knowledge, this is the first reported evidence of a functional molecular link between a centromere-specific DNA sequence and centromeric chromatin assembly in humans.  相似文献   

19.
Human centromeres remain poorly characterized regions of the human genome despite their importance for the maintenance of chromosomes. In part this is due to the difficulty of cloning of highly repetitive DNA fragments and distinguishing chromosome-specific clones in a genomic library. In this work we report the highly selective isolation of human centromeric DNA using transformation-associated recombination (TAR) cloning. A TAR vector with alphoid DNA monomers as targeting sequences was used to isolate large centromeric regions of human chromosomes 2, 5, 8, 11, 15, 19, 21 and 22 from human cells as well as monochromosomal hybrid cells. The alphoid DNA array was also isolated from the 12 Mb human mini-chromosome ΔYq74 that contained the minimum amount of alphoid DNA required for proper chromosome segregation. Preliminary results of the structural analyses of different centromeres are reported in this paper. The ability of the cloned human centromeric regions to support human artificial chromosome (HAC) formation was assessed by transfection into human HT1080 cells. Centromeric clones from ΔYq74 did not support the formation of HACs, indicating that the requirements for the existence of a functional centromere on an endogenous chromosome and those for forming a de novo centromere may be distinct. A construct with an alphoid DNA array from chromosome 22 with no detectable CENP-B motifs formed mitotically stable HACs in the absence of drug selection without detectable acquisition of host DNAs. In summary, our results demonstrated that TAR cloning is a useful tool for investigating human centromere organization and the structural requirements for formation of HAC vectors that might have a potential for therapeutic applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号