首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The refolding of barstar from its urea-unfolded state has been studied extensively using various spectroscopic probes and real-time NMR, which provide global and residue-specific information, respectively, about the folding process. Here, a preliminary structural characterization by NMR of barstar in 8 M urea has been carried out at pH 6.5 and 25 degrees C. Complete backbone resonance assignments of the urea-unfolded protein were obtained using the recently developed three-dimensional NMR techniques of HNN and HN(C)N. The conformational propensities of the polypeptide backbone in the presence of 8 M urea have been estimated by examining deviations of secondary chemical shifts from random coil values. For some residues that belong to helices in native barstar, 13C(alpha) and 13CO secondary shifts show positive deviations in the urea-unfolded state, indicating that these residues have propensities toward helical conformations. These residues are, however, juxtaposed by residues that display negative deviations indicative of propensities toward extended conformations. Thus, segments that are helical in native barstar are unlikely to preferentially populate the helical conformation in the unfolded state. Similarly, residues belonging to beta-strands 1 and 2 of native barstar do not appear to show any conformational preferences in the unfolded state. On the other hand, residues belonging to the beta-strand 3 segment show weak nonnative helical conformational preferences in the unfolded state, indicating that this segment may possess a weak preference for populating a helical conformation in the unfolded state.  相似文献   

2.
Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.  相似文献   

3.
Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues.  相似文献   

4.
The backbone dynamics of the uniformly 15N-labeled IIA domain of the glucose permease of Bacillus subtilis have been characterized using inverse-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation time constants and steady-state (1H)-15N NOEs were measured, at a spectrometer proton frequency of 500 MHz, for 137 (91%) of the 151 protonated backbone nitrogens. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and 15N exchange broadening contributions (Rex) for each residue, as well as the overall molecular rotational correlation time (tau m). The T1 and T2 values for most residues were in the ranges 0.45-0.55 and 0.11-0.15 s, respectively; however, a small number of residues exhibited significantly slower relaxation. Similarly, (1H)-15N NOE values for most residues were in the range 0.72-0.80, but a few residues had much smaller positive NOEs and some exhibited negative NOEs. The molecular rotational correlation time was 6.24 +/- 0.01 ns; most residues had order parameters in the range 0.75-0.90 and tau e values of less than ca. 25 ps. Residues found to be more mobile than the average were concentrated in three areas: the N-terminal residues (1-13), which were observed to be highly disordered; the loop from P25 to D41, the apex of which is situated adjacent to the active site and may have a role in binding to other proteins; and the region from A146 to S149. All mobile residues occurred in regions close to termini, in loops, or in irregular secondary structure.  相似文献   

5.
Yao J  Chung J  Eliezer D  Wright PE  Dyson HJ 《Biochemistry》2001,40(12):3561-3571
Apomyoglobin forms a denatured state under low-salt conditions at pH 2.3. The conformational propensities and polypeptide backbone dynamics of this state have been characterized by NMR. Nearly complete backbone and some side chain resonance assignments have been obtained, using a triple-resonance assignment strategy tailored to low protein concentration (0.2 mM) and poor chemical shift dispersion. An estimate of the population and location of residual secondary structure has been made by examining deviations of (13)C(alpha), (13)CO, and (1)H(alpha) chemical shifts from random coil values, scalar (3)J(HN,H)(alpha) coupling constants and (1)H-(1)H NOEs. Chemical shifts constitute a highly reliable indicator of secondary structural preferences, provided the appropriate random coil chemical shift references are used, but in the case of acid-unfolded apomyoglobin, (3)J(HN,H)(alpha) coupling constants are poor diagnostics of secondary structure formation. Substantial populations of helical structure, in dynamic equilibrium with unfolded states, are formed in regions corresponding to the A and H helices of the folded protein. In addition, the deviation of the chemical shifts from random coil values indicates the presence of helical structure encompassing the D helix and extending into the first turn of the E helix. The polypeptide backbone dynamics of acid-unfolded apomyoglobin have been investigated using reduced spectral density function analysis of (15)N relaxation data. The spectral density J(omega(N)) is particularly sensitive to variations in backbone fluctuations on the picosecond to nanosecond time scale. The central region of the polypeptide spanning the C-terminal half of the E helix, the EF turn, and the F helix behaves as a free-flight random coil chain, but there is evidence from J(omega(N)) of restricted motions on the picosecond to nanosecond time scale in the A and H helix regions where there is a propensity to populate helical secondary structure in the acid-unfolded state. Backbone fluctuations are also restricted in parts of the B and G helices due to formation of local hydrophobic clusters. Regions of restricted backbone flexibility are generally associated with large buried surface area. A significant increase in J(0) is observed for the NH resonances of some residues located in the A and G helices of the folded protein and is associated with fluctuations on a microsecond to millisecond time scale that probably arise from transient contacts between these distant regions of the polypeptide chain. Our results indicate that the equilibrium unfolded state of apomyoglobin formed at pH 2.3 is an excellent model for the events that are expected to occur in the earliest stages of protein folding, providing insights into the regions of the polypeptide that spontaneously undergo local hydrophobic collapse and sample nativelike secondary structure.  相似文献   

6.
Thapar R  Mueller GA  Marzluff WF 《Biochemistry》2004,43(29):9390-9400
Stem-loop binding protein (SLBP) is a 31 kDa protein that is central to the regulation of histone mRNAs and is highly conserved in metazoans. In vertebrates, the N-terminal domain of SLBP has sequence determinants necessary for histone mRNA translation, SLBP degradation, cyclin binding, and histone mRNA import. We have used high-resolution NMR spectroscopy and circular dichroism to characterize the structural and dynamic features of this domain of SLBP from Drosophila (dSLBP). We report that the N-terminal domain of dSLBP is stably unfolded but has nascent helical structure at physiological pH and native-like solution conditions. The conformational and dynamic properties of the isolated domain are mimicked in a longer 175-residue region of the N-terminus, as well as in the full-length protein. Complete resonance assignments, secondary structure propensity, and motional properties of a 91-residue N-terminal domain (G17-K108) of dSLBP are reported here. The deviation of (1)H(alpha), (13)C(alpha), and (13)C(beta) chemical shifts from random coil reveals that there are four regions between residues I28-A45, S50-L57, S66-G75, and F91-N96 that have helical propensity. These regions also have small but positive heteronuclear NOEs, interresidue d(NN) NOEs, and small but significant protection from solvent exchange. However the lack of medium- and long-range NOEs in 3D (15)N- and (13)C-edited spectra, fast amide proton exchange rates (all greater than 1 s(-1)), and long (15)N relaxation (T(1), T(2)) times suggest that the domain from dSLBP does not adopt a well-defined tertiary fold. The backbone residual dipolar couplings (RDCs) for this domain are small and lie close to 0 Hz (+/-2 Hz) for most residues with no well-defined periodicity. The implications of this unfolded state for the function of dSLBP in regulating histone metabolism are discussed.  相似文献   

7.
The denatured state of a double mutant of the chemotactic protein CheY (F14N/V83T) has been analyzed in the presence of 5 M urea, using small angle X-ray scattering (SAXS) and heteronuclear magnetic resonance. SAXS studies show that the denatured protein follows a wormlike chain model. Its backbone can be described as a chain composed of rigid elements connected by flexible links. A comparison of the contour length obtained for the chain at 5 M urea with the one expected for a fully expanded chain suggests that approximately 25% of the residues are involved in residual structures. Conformational shifts of the alpha-protons, heteronuclear (15)N-[(1)H] NOEs and (15)N relaxation properties have been used to identify some regions in the protein that deviate from a random coil behavior. According to these NMR data, the protein can be divided into two subdomains, which largely coincide with the two folding subunits identified in a previous kinetic study of the folding of the protein. The first of these subdomains, spanning residues 1-70, is shown here to exhibit a restricted mobility as compared to the rest of the protein. Two regions, one in each subdomain, were identified as deviating from the random coil chemical shifts. Peptides corresponding to these sequences were characterized by NMR and their backbone (1)H chemical shifts were compared to those in the intact protein under identical denaturing conditions. For the region located in the first subdomain, this comparison shows that the observed deviation from random coil parameters is caused by interactions with the rest of the molecule. The restricted flexibility of the first subdomain and the transient collapse detected in that subunit are consistent with the conclusions obtained by applying the protein engineering method to the characterization of the folding reaction transition state.  相似文献   

8.
PP-50, a peptide based on residues 141-190 of the beta-subunit of mitochondrial F1-ATPase, contains the GX4GKT consensus region for nucleoside triphosphate binding and has been shown to bind ATP [Garboczi, D.N., Shenbagamurthi, W.K., Hullihen, J., & Pedersen, P.L. (1988) J. Biol. Chem. 263, 812-816]. At pH 4.0, appropriate for NMR studies, PP-50 retains the ability to bind ATP tightly (KD = 17.5 microM) with a 1:1 stoichiometry as shown by titrations measuring the partial quenching of ATP fluorescence by PP-50. CD spectra of PP-50 at pH 4.0 and at low ionic strength show 5.8% helix, 30.2% beta-structure, and 64% coil. ATP binding increases the structure of PP-50, changing the CD to 7.5% helix, 44.5% beta-structure, and 48% coil. Increasing the ionic strength to 50 mM KCl also increases the structure, changing the CD to 7.4% helix, 64.4% beta-structure, and 28.2% coil. The 600-MHz proton NMR spectrum of PP-50, at pH 4.0 and low ionic strength, has been assigned by 2D methods (TOCSY, DQF-COSY, and NOESY with jump-return water suppression). Based on strong d alpha N NOEs, J alpha N values, and NH chemical shifts differing from random coil values, regions of extended structure are detected from residues 1-7 and 43-48. Based on dNN, dNN(i,i+2), and d alpha N(i,i+2) NOEs and 3J alpha N values, possible type I' and type I turns are found from residues 11-14 and 31-34, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Zhang X  Xu Y  Zhang J  Wu J  Shi Y 《Biochemistry》2005,44(22):8117-8125
To understand the events that occur in the early stages of the folding of hUBF HMG box 1, we characterized its pH 2.1 unfolded state in detail with NMR. Through a triple resonance strategy, the assignments of complete backbone and some side chains were achieved. Then, significant conformational information was extracted from secondary chemical shifts, interresidual (1)H-(1)H NOEs, (3)J(HNHA) coupling constants, amide proton temperature coefficients, and (15)N relaxation data. The secondary chemical shifts for (13)CA, (13)CB, (13)CO, (1)HA, and (1)HN indicate that the residues between 64 and 78 exhibit a substantial preference for helical structure in the acid-unfolded state, which is also evidenced by the relatively more negative deviations of (3)J(HNHA) and amide proton temperature coefficients from their corresponding random-coil values and particularly confirmed by the strongest sequential d(NN)(i, i + 1) proton NOEs along the region. Following this region until residue 82 is a segment that tends to form a turn-like structure, which is unstable and exchanges between alternative states. In addition, some evidences imply that the regions 18-28 and 38-43 also possess propensities for helical structure but to a different less degree than the region 64-78. The polypeptide backbone dynamics investigated using reduced spectral density function shows apparent motional restrictions in residual structural regions and to less extent at some hydrophobic residues. On the basis of the results presented herein, we propose a potential protein-folding pathway on which these residual structures play a role of initiation site in the early folding stages.  相似文献   

10.
The solution structure of monomeric stromal cell-derived factor-1alpha (SDF-1alpha), the natural ligand for the CXCR4 G-coupled receptor, has been solved by multidimensional heteronuclear NMR spectroscopy. The structure has a characteristic chemokine fold and is in excellent agreement with the individual subunits observed in the crystal structures of dimeric SDF-1alpha. Using various peptides derived from the N-terminal extracellular tail of the CXCR4 receptor, we show that the principal determinants of binding reside in the N-terminal 17 residues of CXCR4, with a major contribution from the first six residues. From 15N/1HN chemical shift pertubation studies we show that the interaction surface on SDF-1alpha is formed by the undersurface of the three-stranded antiparallel beta-sheet bounded by the N-terminal loop on one side and the C-terminal helix on the other. This surface overlaps with but is not identical to that mapped on several other chemokines for the binding of equivalent peptides derived from their respective receptors.  相似文献   

11.
The Ras activator Son of Sevenless (Sos) contains a Cdc25 homology domain, responsible for nucleotide exchange, as well as Dbl/Pleckstrin homology (DH/PH) domains. We have determined the crystal structure of the N-terminal segment of human Sos1 (residues 1-191) and show that it contains two tandem histone folds. While the N-terminal domain is monomeric in solution, its structure is surprisingly similar to that of histone dimers, with both subunits of the histone "dimer" being part of the same peptide chain. One histone fold corresponds to the region of Sos that is clearly similar in sequence to histones (residues 91-191), whereas the other is formed by residues in Sos (1-90) that are unrelated in sequence to histones. Residues that form a contiguous patch on the surface of the histone domain of Sos are conserved from C. elegans to humans, suggesting a potential role for this domain in protein-protein interactions.  相似文献   

12.
The evolution of the nanosecond dynamics of the core tryptophan, Trp53, of barstar has been monitored during the induction of collapse and structure formation in the denatured D form at pH 12, by addition of increasing concentrations of the stabilizing salt Na(2)SO(4). Time-resolved fluorescence methods have been used to monitor the dynamics of Trp53 in the intermediates that are populated during the salt-induced transition of the D form to the molten globule B form. The D form approximates a random coil and displays two rotational correlation times. A long rotational correlation time of 2.54 ns originates from segmental mobility, and a short correlation time of 0.26 ns originates from independent motion of the tryptophan side chain. Upon addition of approximately 0.1 M Na(2)SO(4), the long rotational correlation time increases to approximately 6.4 ns, as the chain collapses and the segmental motions merge to reflect the global tumbling motion of a pre-molten globule P form. The P form exists as an expanded form with approximately 30% greater volume than the native (N) state. The persistence of an approximately 50% contribution to anisotropy decay by the short rotational correlation time suggests that the core of the P form is highly molten and permits free rotation of the Trp side chain. With increasing salt concentrations, tight core packing is achieved before secondary and tertiary structure formation is complete, an observation which agrees well with earlier kinetic folding studies. Thus, the equilibrium model developed here for describing the formation of structure during folding faithfully captures snapshots of transient kinetic intermediates observed on the folding pathway of barstar. A comparison of the refolding kinetics at pH 7, when refolding is initiated from the D, P, and B forms, suggests that formation of a collapsed state with a rigid core and approximately 30% secondary and tertiary structure, which presumably defines a coarse native-like topology, constitutes the intrinsic barrier in the folding of barstar.  相似文献   

13.
14.
Bovine seminal ribonuclease (BS-RNase), the only dimeric protein among the pancreatic-like ribonucleases, is endowed with special structural features and with biological functions beyond enzymatic activity. In solution, the protein exists as an equilibrium mixture of two forms, with or without exchange (or swapping) of the N-terminal arms. After selective reduction and alkylation of the two intrachain disulfide bridges, the dimeric protein can be transformed into a monomeric derivative that has a ribonuclease activity higher than that of the parent dimeric protein but is devoid of the special biological functions. A detailed investigation of the structural features of this protein in solution, in comparison with those of other monomeric ribonucleases, may help unveil the structural details which induce swapping of the N-terminal arms of BS-RNase. The solution structure of the recombinant monomeric form of BS-RNase, as determined by 3D heteronuclear NMR, shows close similarity with that of bovine pancreatic ribonuclease (RNase A) in all regions characterized by regular elements of secondary structure. However, significant differences are present in the flexible regions, which could account for the different behavior of the two proteins. To characterize in detail these regions, we have measured H/D exchange rate constants, temperature coefficients and heteronuclear NOEs of backbone amides for both RNase A and monomeric BS-RNase. The results indicate a large difference in the backbone flexibility of the hinge peptide segment 16-22 of the two proteins, which could provide the molecular basis to explain the ability of BS-RNase subunits to swap their N-terminal arms.  相似文献   

15.
Adhesive type 1 pili from uropathogenic Escherichia coli are filamentous protein complexes that are attached to the assembly platform FimD in the outer membrane. During pilus assembly, FimD binds complexes between the chaperone FimC and type 1 pilus subunits in the periplasm and mediates subunit translocation to the cell surface. Here we report nuclear magnetic resonance and X-ray protein structures of the N-terminal substrate recognition domain of FimD (FimD(N)) before and after binding of a chaperone-subunit complex. FimD(N) consists of a flexible N-terminal segment of 24 residues, a structured core with a novel fold, and a C-terminal hinge segment. In the ternary complex, residues 1-24 of FimD(N) specifically interact with both FimC and the subunit, acting as a sensor for loaded FimC molecules. Together with in vivo complementation studies, we show how this mechanism enables recognition and discrimination of different chaperone-subunit complexes by bacterial pilus assembly platforms.  相似文献   

16.
The temperature-induced structural transitions of the full length Alzheimer amyloid beta-peptide [A(beta)(1-40) peptide] and fragments of it were studied using CD and 1H NMR spectroscopy. The full length peptide undergoes an overall transition from a state with a prominent population of left-handed 3(1) (polyproline II; PII)-helix at 0 degrees C to a random coil state at 60 degrees C, with an average DeltaH of 6.8 +/- 1.4 kJ.mol(-1) per residue, obtained by fitting a Zimm-Bragg model to the CD data. The transition is noncooperative for the shortest N-terminal fragment A(beta)(1-9) and weakly cooperative for A(beta)(1-40) and the longer fragments. By analysing the temperature-dependent 3J(HNH(alpha)) couplings and hydrodynamic radii obtained by NMR for A(beta)(1-9) and A(beta)(12-28), we found that the structure transition includes more than two states. The N-terminal hydrophilic A(beta)(1-9) populates PII-like conformations at 0 degrees C, then when the temperature increases, conformations with dihedral angles moving towards beta-strand at 20 degrees C, and approaches random coil at 60 degrees C. The residues in the central hydrophobic (18-28) segment show varying behaviour, but there is a significant contribution of beta-strand-like conformations at all temperatures below 20 degrees C. The C-terminal (29-40) segment was not studied by NMR, but from CD difference spectra we concluded that it is mainly in a random coil conformation at all studied temperatures. These results on structural preferences and transitions of the segments in the monomeric form of A(beta) may be related to the processes leading to the aggregation and formation of fibrils in the Alzheimer plaques.  相似文献   

17.
Okon M  Frank PG  Marcel YL  Cushley RJ 《FEBS letters》2001,487(3):390-396
The solution structure of an apoA-I deletion mutant, apoA-I(1-186) was determined by the chemical shift index (CSI) method and the torsion angle likelihood obtained from shift and sequence similarity (TALOS) method, using heteronuclear multidimensional NMR spectra of [u-(13)C, u-(15)N, u-50% (2)H]apoA-I(1-186) in the presence of sodium dodecyl sulfate (SDS). The backbone resonances were assigned from a combination of triple-resonance data (HNCO, HNCA, HN(CO)CA, HN(CA)CO and HN(COCA)HA), and intraresidue and sequential NOEs (three-dimensional (3D) and four-dimensional (4D) 13C- and 15N-edited NOESY). Analysis of the NOEs, H(alpha), C(alpha) and C' chemical shifts shows that apoA-I(1-186) in lipid-mimetic solution is composed of alpha-helices (which include the residues 8-32, 45-64, 67-77, 83-87, 90-97, 100-140, 146-162, and 166-181), interrupted by short irregular segments. There is one relatively long, irregular and mostly flexible region (residues 33-44), that separates the N-terminal domain (residues 1-32) from the main body of protein. In addition, we report, for the first time, the structure of the N-terminal domain of apoA-I in a lipid-mimetic environment. Its structure (alpha-helix 8-32 and flexible linker 33-44) would suggest that this domain is structurally, and possibly functionally, separated from the other part of the molecule.  相似文献   

18.
Long-[Arg(3)]insulin-like growth factor-I (IGF-I) is a potent analog of insulin-like growth factor-I that has been modified by a Glu(3) --> Arg mutation and a 13-amino acid extension appended to the N terminus. We have determined the solution structure of (15)N-labeled Long-[Arg(3)]-IGF-I using high resolution NMR and restrained molecular dynamics techniques to a precision of 0.82 +/- 0.28 A root mean square deviation for the backbone heavy atoms in the three alpha-helices and 3.5 +/- 0.9 A root mean square deviation for all backbone heavy atoms excluding the 8 N-terminal residues and the 8 C-terminal eight residues. Overall, the structure of the IGF-I domain is consistent with earlier studies of IGF-I with some minor changes remote from the N terminus. The major variations in the structure, compared with IGF-I, occur at the N terminus with a substantial reorientation of the N-terminal three residues of the IGF-I domain. These results are interpreted in terms of the lower binding affinity for insulin-like growth factor-binding proteins. The backbone dynamics of Long-[Arg(3)]IGF-I were investigated using (15)N nuclear spin relaxation and the heteronuclear nuclear Overhauser enhancement (NOE). There is a considerable degree of flexibility in Long-[Arg(3)]IGF-I, even in the alpha-helices, as indicated by an average ((1)H)(15)N NOE of 0.55 for the regions. The largest heteronuclear NOEs are observed in the helical regions, lower heteronuclear NOEs are observed in the C-domain loop separating helix 1 from helix 2, and negative heteronuclear NOEs are observed in the N-terminal extension and at the C terminus. Despite these data indicating conformational flexibility for the N-terminal extension, slow amide proton exchange was observed for some residues in this region, suggesting some transitory structure does exist, possibly a molten helix. A certain degree of flexibility may be necessary in all insulin-like growth factors to enable association with various receptors and binding proteins.  相似文献   

19.
Galectin-3, a beta-galactoside binding protein, contains a C-terminal carbohydrate recognition domain (CRD) and an N-terminal domain that includes several repeats of a proline-tyrosine-glycine-rich motif. Earlier work based on a crystal structure of human galectin-3 CRD, and modeling and mutagenesis studies of the closely homologous hamster galectin-3, suggested that N-terminal tail residues immediately preceding the CRD might interfere with the canonical subunit interaction site of dimeric galectin-1 and -2, explaining the monomeric status of galectin-3 in solution. Here we describe high-resolution NMR studies of hamster galectin-3 (residues 1--245) and several of its fragments. The results indicate that the recombinant N-terminal fragment Delta 126--245 (residues 1--125) is an unfolded, extended structure. However, in the intact galectin-3 and fragment Delta 1--93 (residues 94--245), N-terminal domain residues lying between positions 94 and 113 have significantly reduced mobility values compared with those expected for bulk N-terminal tail residues, consistent with an interaction of this segment with the CRD domain. In contrast to the monomeric status of galectin-3 (and fragment Delta 1--93) in solution, electron microscopy of negatively stained and rotary shadowed samples of hamster galectin-3 as well as the CRD fragment Delta 1--103 (residues 104--245) show the presence of a significant proportion (up to 30%) of oligomers. Similar imaging of the N-terminal tail fragment Delta 126--245 reveals the presence of fibrils formed by intermolecular interactions between extended polypeptide subunits. Oligomerization of substratum-adsorbed galectin-3, through N- and C-terminal domain interactions, could be relevant to the positive cooperativity observed in binding of the lectin to immobilized multiglycosylated proteins such as laminin.  相似文献   

20.
The HIV-1 Gag polyprotein contains a segment called p2, located between the capsid (CA) and nucleocapsid (NC) domains, that is essential for ordered virus assembly and infectivity. We subcloned, overexpressed, and purified a 156-residue polypeptide that contains the C-terminal capsid subdomain (CA(CTD)) through the NC domain of Gag (CA(CTD)-p2-NC, Gag residues 276-431) for NMR relaxation and sedimentation equilibrium (SE) studies. The CA(CTD) and NC domains are folded as expected, but residues of the p2 segment, and the adjoining thirteen C-terminal residues of CA(CTD) and thirteen N-terminal residues of NC, are flexible. Backbone NMR chemical shifts of these 40 residues deviate slightly from random coil values and indicate a small propensity toward an alpha-helical conformation. The presence of a transient coil-to-helix equilibrium may explain the unusual and necessarily slow proteolysis rate of the CA-p2 junction. CA(CTD)-p2-NC forms dimers and self-associates with an equilibrium constant (Kd = 1.78 +/- 0.5 microM) similar to that observed for the intact capsid protein (Kd = 2.94 +/- 0.8 microM), suggesting that Gag self-association is not significantly influence by the P2 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号