首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of different calcium-antagonists on secretion of very-low-density lipoprotein (VLDL) from cultured rat hepatocytes were examined. Verapamil (an inhibitor of voltage-dependent calcium channels) and EGTA (a calcium chelator) decreased VLDL-triacylglycerol secretion in a concentration-dependent manner, with maximum inhibition (about 90%) at 0.2 mM-verapamil and 5 mM-EGTA. Inorganic calcium-antagonists such as lanthanum, nickel, cobalt and manganese decreased secretion of VLDL-triacylglycerol by 55-95%, whereas the calcium-agonist barium did not affect secretion. Inhibition of VLDL-triacylglycerol secretion appeared within 30 min, without inhibition of triacylglycerol synthesis. Pulse-chase experiments revealed that verapamil and cobalt inhibited the secretory pathway itself. Cobalt showed a concentration-dependent inhibition of VLDL-triacylglycerol secretion, with maximal effect at 8 mM. Although inhibition by cobalt was not completely reversible, Trypan Blue exclusion and lactate dehydrogenase leakage indicated that the hepatocytes were not injured by cobalt or any of the other calcium-antagonists tested. Inhibition of protein synthesis by cycloheximide did not affect triacylglycerol secretion (up to 2 h), and the observed effects were therefore probably not due to impaired production of apolipoproteins. Taken together, these results suggest that calcium is important for secretion of VLDL particles.  相似文献   

2.
Summary The weak base chloroquine and the Na+/H+ ionophore monensin were used to study the role of lysosomes in the induction of DNA synthesis by platelet-derived growth factor (PDGF) in rat arterial smooth muscle cells cultivated in vitro. The results show that PDGF initiates DNA synthesis in a defined, serum-free medium. This indicates that a single factor may control, directly or indirectly, the transition from the G0 to the G1 phase, the progress through the G1 phase, and the entrance into the S phase of the cell cycle. It is further demonstrated that PDGF has to be present throughout most of the prereplicative period (12–16 h) to induce DNA synthesis in the maximum number of cells, suggesting that one or more processes need to be stimulated continually or successively to push the cell into the S phase. Chloroquine and monensin inhibit induction of DNA replication by PDGF, with maximum effect at 50 M and 5 M, respectively. To be fully active, the drugs have to be added within 4–8 h after the growth factor, but a partial inhibition persists if they are added at any time during the prereplicative period. Both drugs reduce PDGF-stimulated RNA and protein synthesis, and suppress degradation of [3H]leucine-labeled cellular protein and [125I]-labeled PDGF. Fine-structurally, they give rise to an accumulation of lysosomes or prelysosomal vacuoles with inclusions of incompletely degraded material. These findings suggest that the mitogenic effect of PDGF is dependent on a normal function of lysosomes during the prereplicative phase, especially its first half (0–8 h).  相似文献   

3.
Complete inhibition of transferrin recycling by monensin in K562 cells   总被引:17,自引:0,他引:17  
Monensin blocks human transferrin recycling in a dose-dependent and reversible manner in K562 cells, reaching 100% inhibition at a noncytocidal dose of 10(-5) M, whereas transferrin recycling is virtually unaffected by noncytocidal doses of chloroquine. The intracellular pathway of human transferrin in K562 cells, both in the presence and absence of 10(-5) M monensin, was localized by indirect immunofluorescence. Monensin blocks transferrin recycling by causing internalized ligand to accumulate in the perinuclear region of the cell. The effect of 10(-5) M monensin on human transferrin kinetics was quantitatively measured by radioimmunoassay and showed a positive correlation with immunofluorescent studies. Immunoelectron microscopic localization of human transferrin as it cycles through K562 cells reveals the appearance of perinuclear transferrin-positive multivesicular bodies within 3 min of internalization, with subsequent exocytic delivery of the ligand to the cell surface via transferrin-staining vesicles arising from these perinuclear structures within 5 min of internalization. Inhibition of ligand recycling with 10(-5) M monensin causes dilated transferrin-positive multivesicular bodies to accumulate within the cell with no evidence of recycling vesicles. A coordinated interaction between multivesicular bodies and the Golgi apparatus appears to be involved in the recycling of transferrin in K562 cells. Cell-surface-binding sites for transferrin were reduced by 50% with 10(-5) M monensin treatment; however, this effect was not attenuated by 80% protein synthesis inhibition with cycloheximide, supporting the idea that the transferrin receptor is also recycled through the Golgi.  相似文献   

4.
Pig laryngeal chondrocytes incubated in the presence of monensin showed inhibition of [35S]sulphate incorporation and decreased secretion of proteoglycan into the culture medium, but no large decrease in protein synthesis. This lead to the intracellular accumulation of proteoglycan protein core, which was detected in immunoprecipitates of cell extracts. Using the same antiserum protein core was localised by electron microscopy with protein A-coated gold. In control chondrocytes, it was detected only in elements of the Golgi and in secretory vesicles, but following monensin treatment labelling was more intense in the Golgi and extended into the distended cisternae of the rough endoplasmic reticulum. The results suggest that monensin blocks proteoglycan protein core translocation between different elements of the Golgi and that this occurs prior to the major site of chondroitin sulphate synthesis on proteoglycan.  相似文献   

5.
Detailed studies on the effects of the ionophore monensin upon synthesis, maturation, and intracellular transport of pro-opiomelanocortin in cultures of rat pituitary intermediate lobe cells have been carried out. When added at concentrations larger than 5 X 10(-8) M monensin significantly inhibited protein synthesis by cultured intermediate lobe cells. Pro-opiomelanocortin synthesis was also reduced proportionally to the overall rate of protein synthesis. During pulse-chase experiments, monensin when added at a concentration of 10(-5) M at the beginning of the chase incubation completely inhibited the proteolytic processing of pro-opiomelanocortin. Using a subcellular fractionation procedure of intermediate lobe cell extracts on Percoll gradients, we were able to show that after the addition of monensin (10(-5) M), labeled pro-opiomelanocortin molecules synthesized during a 15-min pulse-incubation were recovered intact after a 2-h chase, in the fractions of the density gradient corresponding to the rough endoplasmic reticulum and Golgi elements. No maturation products or precursor molecules entered the granule fractions as observed in nontreated cells. Taken together these results strongly suggest that monensin blocks the intracellular transport of newly synthesized pro-opiomelanocortin molecules at the Golgi level and that inhibition of proteolytic processing is due to the failure of the prohormone to enter the cell compartment (probably the secretion granules) where maturation proteases are located.  相似文献   

6.
Effects of weak amines on the proteolytic conversion of proalbumin to serum albumin were studied in primary culture of rat hepatocytes. In control culture proalbumin was converted to serum albumin before discharge into the medium. However, in the presence of chloroquine the conversion to serum albumin was inhibited and proalbumin per se was released into medium. A similar inhibition of the processing was also observed in the presence of other amines such as methylamine and NH4Cl. Thus weak amines mimic the carboxylic ionophore monensin with regard to the effect on proalbumin conversion [Oda & Ikehara (1982) Biochem. Biophys. Res. Commun. 105, 766-772]. Since proteolytic conversion of proalbumin is believed to occur at the Golgi complex, these results suggest that weakly basic amines perturb the Golgi complex in addition to lysosomes and endosomes.  相似文献   

7.
The effects of chloroquine and mepacrine were determined on the release of slow reacting substances (leukotrienes) from lung fragments in vitro. These drugs have been shown in a variety of tissues to inhibit phospholipase A2, and thus to reduce the availability of arachidonate, which is a substrate for leukotriene biosynthesis. Leukotriene and histamine release from unsensitized human lung was stimulated by calcium ionophore A23187, and from actively sensitized guinea-pig lung, by ovalbumin. Chloroquine (10 μM and 100 μM) significantly inhibited leukotriene release in lung from both species, and at 100 μM also inhibited histamine release. Mepacrine (10 μM) inhibited leukotriene release in human lung and at 100 μM in guinea-pig lung. The effects of chloroquine (100 μM) on leukotriene release were counteracted by the presence of arachidonic acid (10 μM), which suggests that chloroquine had impaired the availability of arachidonate. It seems probable that chloroquine and mepacrine inhibit leukotriene release by inhibition of phospholipase A2 in lung.  相似文献   

8.
Cbl (cobalamin) utilization as an enzyme cofactor is dependent on its efficient transit through lysosomes to the cytosol and mitochondria. We have previously proposed that pathophysiological perturbations in lysosomal function may inhibit intracellular Cbl transport with consequences for down-stream metabolic pathways. In the current study, we used both HT1080 fibroblasts and SH-SY5Y neurons to assess the impact that protease inhibitors, chloroquine and leupeptin (N-acetyl-L-leucyl-L-leucyl-L-argininal), have on the distribution of [57Co]Cbl in lysosomes, mitochondria and cytosol. Under standard cell culture conditions the distribution of [57Co]Cbl in both neurons and fibroblasts was ~5% in lysosomes, 14% in mitochondria and 81% in cytosol. Treatment of cells with either 25 μM chloroquine or 40 μM leupeptin for 48 h significantly increased the lysosomal [57Co]Cbl levels, by 4-fold in fibroblasts and 10-fold in neurons, and this was associated with reduced cytosolic and mitochondrial [57Co]Cbl concentrations. Based on Western blotting of LAMP2 in fractions recovered from an OptiPrep density gradient, lysosomal Cbl trapping was associated with an expansion of the lysosomal compartment and an increase in a subpopulation of lysosomes with increased size and density. Moreover, the decreased mitochondrial Cbl that was associated with lysosomal Cbl trapping was correlated with decreased incorporation of [14C] propionate into cellular proteins/macromolecules, indicating an inhibition of Cbl-dependent Mm-CoA (methylmalonyl-coenzyme A) mutase activity. These results add support to the idea that lysosomal dysfunction may significantly impact upon Cbl transport and utilization.  相似文献   

9.
Cultured rat hepatocytes were incubated in medium containing 1.0 mM oleic acid. The incorporation of [3H]glycerol into cell-associated and medium triacylglycerols was measured after 2 h incubation. More than 95% of the secreted [3H]triacylglycerols were recovered in the very low density lipoprotein (VLDL) fraction (d less than 1.006). Chloroquine and other lysosomotropic amines promoted a marked decrease in [3H]triacylglycerol secretion from the hepatocytes while the synthesis was unaffected. At 50-200 microM final concentration, chloroquine inhibited secretion of triacylglycerols by 70-90% of the control. Similar results were obtained when the mass of secreted triacylglycerols was measured. Chloroquine caused decreased secretion of [3H]triacylglycerols after 15-30 min incubation and the inhibitory effect was completely reversible within 1-2 h after washout of chloroquine. The reduced triacylglycerol secretion was not due to increased reuptake of secreted lipoproteins or decreased protein synthesis caused by chloroquine. Electron microscopy of chloroquine-treated cells showed that the inhibition of VLDL secretion occurs at or prior to the level of the Golgi apparatus. These results suggest that chloroquine interferes with crucial steps in the secretory process and/or that lysosomal function could be essential for secretion of VLDL.  相似文献   

10.
Comparative studies of intracellular transport of secretory proteins   总被引:67,自引:35,他引:32       下载免费PDF全文
The physiology of protein intracellular transport and secretion by cell types thought to be free from short-term control has been compared with that of the pancreatic acinar cell, using pulse-chase protocols to follow biosynthetically-labeled secretory products. Data previously obtained (Tartakoff, A.M., and P. Vassalli. J. Exp. Med. 146:1332-1345) has shown that plasma-cell immunoglobulin (Ig) secretion is inhibited by respiratory inhibitors, by partial Na/K equilibration effected by the carboxylic ionophore monensin, and by calcium withdrawal effected by the carboxylic ionophore A 23187 in the presence of ethylene glycol bis (beta-aminoethylether)-N,N,N'',N''-tetraacetic acid (EGTA) and absence of calcium. We report here that both inhibition of respiration and treatment with monensin slow secretion by fibroblasts, and also macrophages and slow intracellular transport (though not discharge per se) by the exocrine pancreatic cells. Attempted calcium withdrawal is inhibitory for fibroblasts but not for macrophages. The elimination of extracellular calcium or addition of 50 mM KCl has no major effect on secretory rate of either fibroblasts or macrophages. Electron microscopic examination of all cell types shows that monensin causes a rapid and impressive dilation of Golgi elements. Combined cell fractionation and autoradiographic studies of the pancreas show that the effect of monensin is exerted at the point of the exit of secretory protein from the Golgi apparatus. Other steps in intracellular transport proceed at normal rates. These observations suggest a common effect of the cytoplasmic Na/K balance at the Golgi level and lead to a model of intracellular transport in which secretory product obligatorily passes through Golgi elements (cisternae?) that are sensitive to monensin. Thus, intracellular transport follows a similar course in both regulated and nonregulated secretory cells up to the level of distal Golgi elements.  相似文献   

11.
    
Summary The effect of monensin on the Golgi complex, formation of secretory granules and basal -endorphin secretion in cultured melanotrophs from the rat pituitary was studied. Earlier studies on the effect of monensin on regulated secretion have generally showed only minor effects on secretory granules. The initial (within 5 min) effect of monensin on the melanotroph was the appearance of large vacuoles at the trans-side of the thiamine pyrophosphatase-positive trans-most Golgi cisternae. This was associated with a dose-dependent inhibition of the condensation of electron-dense secretory products. After 1 h of treatment with 1 M monensin the Golgi stack was completely vacuolized. At the same time mature secretory granules were enlarged to severalfold their original size, and after 4h of treatment secretory granules were no longer observed. Despite the marked effects on granule formation and mature secretory granules monensin did not affect the basal release of -endorphin-immunoreactive material during continued incubation for up to 4h, indicating that basal peptide secretion can bypass the monensin block.  相似文献   

12.
The effects of the lysosomotropic weak bases, NH4Cl, methylamine and chloroquine, on the secretory process of antibody-synthesizing cells were studied. Popliteal lymph node cells taken from rats immunized against horseradish peroxidase (HRP) were incubated with the lysosomotropic agents. The rate of secretion of anti-HRP antibodies was measured using an indirect enzyme-linked immunosorbent assay. These agents induced an inhibition of antibody release within 5 min, and for all four concentrations tested, maximal inhibition was reached after 15 min. A 50% inhibition was obtained with 20 mM NH4Cl, 21.7 mM methylamine and 8.8 X 10(-4) M chloroquine. This effect was rapidly and entirely reversible, regardless of the weak base used, and it increased as the pH of the extracellular media was raised. Under these conditions, intracellular ATP contents remained normal, and protein synthesis did not undergo marked changes except with chloroquine. Inhibition of secretion was accompanied by an intracellular accumulation of antibodies which was equal to the degree of inhibition of antibody release. Immunocytochemical studies of the weak base-treated cells performed by light and electron microscopy showed that this accumulation probably occurred within certain dilated Golgi saccules. In addition, reduced incorporation of fucose into immunoglobulins as well as partial inhibition of the secretion of fucosylated immunoglobulins were observed in the presence of weak bases. These results are consistent with the hypothesis that weak bases inhibit antibody secretion by acting within saccules of the Golgi apparatus. These saccules could maintain an acidic pH important for the migration and/or sorting of immunoglobulins.  相似文献   

13.
BackgroundMultidrug efflux transporter P-glycoprotein (P-gp) is highly expressed on membrane of tumor cells and is implicated in resistance to tumor chemotherapy. HZ08 is synthesized and studied in order to find a novel P-gp inhibitor.MethodsMDCK-MDR1 monolayer transport, calcein-AM P-gp inhibition and P-gp ATPase assays were used to confirm the P-gp inhibition capability of HZ08. Furthermore, KB-WT and KB-VCR cells were used to evaluate the P-gp inhibitory activity of HZ08 both in vitro and in vivo.ResultsResults showed that HZ08 was more potent than verapamil in MDCK-MDR1 monolayer transportation model. Meanwhile, P-gp ATPase assay and calcein-AM P-gp inhibition assay confirmed that HZ08 inhibited P-gp ATPase with a calcein-AM IC50 of 2.44±0.31μM. In addition, significantly greater in vitro multidrug resistance reversing effects were observed when vincristine or paclitaxel was used in combination with 10μM HZ08 compared with 10μM verapamil. Moreover, HZ08 could significantly enhance the sensitivity of vincristine with a similar effect like verapamil in both KB-WT and KB-VCR tumor xenograft models.ConclusionsThe novel structure HZ08 could be a potent P-gp inhibitor.  相似文献   

14.
18:1/docosahexaenoic acid (DHA)-containing phosphatidylethanolamine (PE) enhanced cell differentiation and growth inhibition of HL-60 induced by dibutyryl cAMP (dbcAMP) in a dose-dependent manner. The combined treatment of 200 μM dbcAMP and 50 μM 18:1/DHA-PE increased the NBT reducing activity, which is as an indicator of cell differentiation, to more than 75% from 40% of cells treated with 200 μM dbcAMP alone. In HL-60 cells treated with 50 μM 18:1/DHA-PE and 200 μM dbcAMP for 24 h, the expression level of c-jun mRNA and c-Jun protein were remarkably elevated compared to cells treated with dbcAMP alone. In contrast, there was no difference in the expression levels of c-fos mRNA and c-Fos protein between the combination of 18:1/DHA-PE + dbcAMP or dbcAMP alone. On the other hand, the combine treatment of 18:1/DHA-PE and dbcAMP markedly reduced the expression level of c-myc oncogene during 48 h incubation. The decreases of c-myc mRNA by 18:1/DHA-PE and/or dbcAMP was correlated with growth inhibition effect. Thus, 18:1/DHA-PE might enhance dbcAMP-induced HL-60 cell differentiation and growth inhibition by regulation of c-jun and c-myc mRNA and their products.  相似文献   

15.
Cyclic AMP-dependent protein kinases I and II, partially purified from rat liver cytosol, were inhibited 50% by 40 μM hemin and 100 μM hemin, respectively. With the purified catalytic subunit of cyclic AMP-dependent protein kinase, hemin caused non-competitive inhibition with respect to the peptide substrate and mixed inhibition with respect to ATP. Hemin also inhibited purified phosphorylase b kinase, indicating that hemin concentrations above 10 μM markedly inhibit multiple protein kinases. In isolated intact hepatocytes, hemin inhibited the glucagon-dependent activation of cyclic AMP-dependent protein kinases and the activation of glycogen phosphorylase. For both effects, high heme concentrations (40–60 μM) were required for 50% inhibition. Similar high levels of exogenous hemin inhibited total hepatocyte protein synthesis. By contrast, 5 μM hemin or less was sufficient to raise intracellular heme levels, as indicated by the relative heme-saturation of tryptophan oxygenase in hepatocytes. Hemin, 5 μM, completely repressed induction of 5-aminolevulinate synthase by dexamethasone in hepatocyte primary cultures. Such repression is unlikely to be mediated by inhibition of protein kinases.  相似文献   

16.
We report that rottlerin, a plant-derived compound known to inhibit various mammalian kinases, profoundly inhibited chlamydial growth in cell culture with a minimal inhibition concentration of 1 μM. The inhibition was effective even when rottlerin was added as late as the middle stage of chlamydial infection cycle, against multiple Chlamydia species, and in different host cell lines. Pretreatment of host cells with rottlerin prior to infection also blocked chlamydial growth, suggesting that rottlerin targets host factors. Moreover, rottlerin did not alter the chlamydial infection rate and did not directly target chlamydial protein synthesis and secretion. The rottlerin-mediated inhibition of chlamydial replication and inclusion expansion correlated well with the rottlerin-induced blockade of host cell sphingolipid trafficking from the Golgi apparatus into chlamydial inclusions. These studies not only allowed us to identify a novel antimicrobial activity for rottlerin but also allowed us to uncover a potential mechanism for rottlerin inhibition of chlamydial growth.  相似文献   

17.
Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 μg/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 μg/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of approximately 10 min. These results suggest a similar intracellular pathway in the maturation of both plasma membrane and secretory glycoproteins.  相似文献   

18.
We examined the effect of brefeldin A, an antiviral antibiotic, on protein synthesis, intracellular processing, and secretion in primary culture of rat hepatocytes. The secretion was strongly blocked by the drug at 1 microgram/ml and higher concentrations, while the protein synthesis was maintained fairly well. Pulse-chase experiments with [35S]methionine demonstrated that brefeldin A completely blocked the proteolytic conversion of proalbumin to serum albumin up to 60 min of chase, although its conversion was observed as early as 20 min in the control cells. The drug also inhibited the terminal glycosylation of oligosaccharide chains of alpha 1-protease inhibitor and haptoglobin. These two modifications have been shown to occur at the trans region of the Golgi complex. The drug, however, had no effect on the proteolytic processing of the haptoglobin proform which takes place within the endoplasmic reticulum. Such an effect by brefeldin A is very similar with that induced by the carboxylic ionophore monensin. However, in contrast to evidence that monensin causes a delayed secretion of the unprocessed forms of these proteins, brefeldin A allowed the completely processed forms to be secreted after a prolonged accumulation of the unprocessed forms. Morphological observations demonstrated that the endoplasmic reticulum was markedly dilated by treatment with the drug at 10 micrograms/ml which continuously blocked the secretion. On the other hand, brefeldin A caused no inhibitory effect on the endocytic pathway as judged by cellular uptake and degradation of 125I-asialofetuin. These results indicate that brefeldin A is a unique agent which primarily impedes protein transport from the endoplasmic reticulum to the Golgi complex by a mechanism different from those considered for other secretion-blocking agents so far reported.  相似文献   

19.
The mAb anti-CD5 was linked to purified ricin A chain (RTA) or intact ricin (Rc) containing B chain to determine the role of ricin B chain in the intracellular trafficking of anti-CD5 immunotoxins (IT). IT were radiolabeled with iodine-125 and then studied for their subcellular compartmentalization in an acute lymphoblastic leukemia T cell line, CEM. Ricin A chain IT was not as toxic to CEM cells as Rc-IT in protein synthesis inhibition assays. This difference was not attributed to differential binding or modulation of the CD5 determinant from the cell surface as measured by FACS analysis. However, we found a relationship between the toxicity of anti-CD5-Rc and anti-CD5-RTA and their ability to traffic to CEM lysosomes. Kinetic analysis of the transfer of radioimmunotoxin to the lysosomes showed that anti-CD5-Rc was trafficked significantly more slowly than anti-CD5-RTA, perhaps due to an extended period of time in the Golgi compartment. The possibility of a Golgi interaction was tested by adding monensin, a carboxylic ionophore that interrupts trafficking through the Golgi, to cells treated with anti-CD5-RTA. The addition of monensin caused anti-CD5-RTA to traffic in a manner identical to anti-CD5-Rc. We conclude that 1) B chain slows trafficking of anti-CD5-Rc to the lysosomes; 2) the rate-limiting step in the toxicity difference between anti-CD5-Rc and anti-CD5-RTA is the rate of transfer to the lysosomes; and 3) trafficking through the Golgi may be important for anti-CD5-IT toxicity.  相似文献   

20.
Monensin was used to ascertain the location in the biosynthetic pathway where the 77,000-Mr membrane-bound subunit form of dopamine beta-hydroxylase is post-translationally converted to the 73,000-Mr soluble form. Treatment with low concentrations of monensin (less than or equal to 50 nM) completely depleted the cells of the norepinephrine and dopamine, had a small effect on protein synthesis, and enhanced post-translational processing of only dopamine beta-hydroxylase which was previously synthesized and presumably packaged into neurosecretory vesicles. At these low concentrations, exit from the Golgi apparatus did not appear to be blocked since stimulated secretion of a group of high molecular weight [35S]methionine-labeled proteins was not inhibited. Treatment with higher concentrations of monensin (200 nM) prevented the secretion of the [35S] methionine-labeled proteins normally released with a secretagogue, and also prevented the secretion of [3H] mannose-labeled proteins including dopamine beta-hydroxylase. Surprisingly, a group of lower molecular weight [35S]methionine-labeled proteins was now released from monensin-treated cells. Treatment with high concentrations of monensin (greater than or equal to 200 nM) appeared to block the secretory pathway prior to the packaging step, probably in the Golgi apparatus. If the proteins were packaged prior to monensin treatment, they were released upon stimulation with secretagogues. Monensin treatment (200 nM) enabled the post-translational processing of newly synthesized dopamine beta-hydroxylase, from the 77,000-Mr to the 73,000-Mr subunit form, to go to completion. The susceptibility of this 73,000-Mr subunit form to endoglycosidase H digestion was unaltered, suggesting that dopamine beta-hydroxylase from monensin-treated cells may have the same high mannose oligosaccharide content as native dopamine beta-hydroxylase. These experiments indicate that the post-translational processing of dopamine beta-hydroxylase occurs in the Golgi apparatus and may continue in immature granules prior to their acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号